Answer:
16 students can sit around a cluster of 7 square table.
Step-by-step explanation:
Consider the provided information.
We need to find how many students can sit around a cluster of 7 square table.
The tables in a classroom have square tops.
Four students can comfortably sit at each table with ample working space.
If we put the tables together in cluster it will look as shown in figure.
From the pattern we can observe that:
Number of square table in each cluster Total number of students
1 4
2 6
3 8
4 10
5 12
6 14
7 16
Hence, 16 students can sit around a cluster of 7 square table.
I think the answer is x times 2 - 61
Answer:
around 35-42° it's one of them 2 probably 40-41°
(4xy-2y^2)+2y
4-2=2....x will remain y^1-y^2=y^-1
2xy^-1+2y
answer=2x+2y
X²+y²-2y=7
using the formula that links Cartesian to Polar coordinates
x=rcosθ and y=r sin θ
substituting into our expression we get:
(r cos θ)²+(r sin θ)²-2rsinθ=7
expanding the brackets we obtain:
r²cos²θ+r²sin²θ=7+2rsinθ
r²(cos²θ+sin²θ)=7+2rsinθ
using trigonometric identity:
cos²θ+sin²θ=1
thus
r²=2rsinθ+7
Answer: r²=2rsinθ+7