When the comet is closest to the Sun,
it has its maximum kinetic energy
and minimum gravitational potential energy. When the comet is far away from the Sun, it has maximum gravitational potential energy and minimal kinetic energy. It's faster when it's close because the Sun's gravity is pulling the comet closer. The opposite for when it gets farther away
To solve this we assume
that the gas inside is an ideal gas. Then, we can use the ideal gas
equation which is expressed as PV = nRT. At a constant pressure and number of
moles of the gas the ratio T/V is equal to some constant. At another set of
condition of temperature, the constant is still the same. Calculations are as
follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 = 659.7 x 28 / 504.7
<span>V2 = 36.60 in^3</span>
I think it’s 25 but I don’t know
<span>The image produced is real and enlarged.
Check for various positions of objects and Images for convex lens.
Note at position of 2F, the image is same as the object, and once it is between 2F and F, the image becomes bigger than the object. </span>
Newtons Law of motion
HOPE IT HELPS:)