Answer
False
Explanation
Specific heat is the amount of heat per unit mass required to rise the temperature of a substance by one degree celsius.It is expressed in units of thermal energy per degree temperature.A calorimeter is used when measuring the heat capacity of a reaction.Molar heat capacity is amount of heat required to raise the temperature of a substance by one degree Celsius.
Answer:
The answer to your question is: letter E
Explanation:
A. This option is correct, the n = 3 shell only has subshells: s, p and d, and shell n = 4 or 5 have f subshell.
B. This option is true in subshell p could be at most 6 electrons and 3 suborbitals.
C. This option is correct orbital "s" is a sphere.
D. This option is correct, in subshell d could be at most 10 electrons and 5 orbitals.
E. This option is false, hydrogen only has 1 electron and then one subshell (s).
Answer:
KBr is limiting reactant.
Explanation:
Given data:
Mass of KBr =4g
Mass of Cl₂ = 6 g
Limiting reactant = ?
Solution:
Chemical equation:
2KBr + Cl₂ → 2KCl + Br₂
Number of moles of KBr:
Number of moles = mass/molar mass
Number of moles = 4 g/ 119 gmol
Number of moles = 0.03 mol
Number of moles of Cl₂:
Number of moles = mass/molar mass
Number of moles = 6 g/ 70 gmol
Number of moles = 0.09 mol
Now we will compare the moles of reactant with product.
KBr : KCl
2 : 2
0.03 : 0.03
KBr : Br₂
2 : 1
0.03 : 1/2×0.03= 0.015
Cl₂ : KCl
1 : 2
0.09 : 2/1×0.09 = 0.18
Cl₂ : Br₂
1 : 1
0.09 : 0.09
Less number of moles of product are formed by the KBr thus it will act as limiting reactant while Cl₂ is present in excess.
Arsenic, I believe. Metalloids fall in between metals and nonmetals (usually on the bold line separating the two on the periodic table). And since the metalloid in question has four electron shells and five valence electrons in the outermost shell, you can see that this element is arsenic
<span>2HI + Ca(OH)2 --> Cal + 2H2O. According to stoichiometry, 2 moles of HI reacts with 1 mole of Ca(OH)2. Therefore, 1.2 moles of HI will react with = 1.2/2 = 0.6 moles of Ca(OH)2. Hope this helps.</span>