Answer: GeH4 (Germanium(IV) Hydride)
Explanation:
A Binary molecular compound Hydrogen and a Group 4A element which is more more acidic than SiH4 in aqueous solution is GeH4.
The pKa of GeH4;
= 25
Whilst that of SiH4
= 35
The lesser the pKa the higher the Ka which means more acidic.
If Liquid 1 has a higher specific heat than Liquid 2, then Liquid 1 will take longer to increase in temperature because the higher specific heat of a liquid needs more thermal energy for heating a liquid.
<h3>What is specific heat?</h3>
Specific heat of a substance refers to the quantity of heat that is required to raise the temperature of one gram of a substance by one Celsius degree so we can conclude that Liquid 1 will take longer to increase in temperature
Learn more about heat here: brainly.com/question/24390373
We can use the dilution formula to find the volume of the diluted solution to be prepared
c1v1 = c2v2
Where c1 is concentration and v1 is volume of the concentrated solution
And c2 is concentration and v2 is volume of the diluted solution to be prepared
Substituting the values in the equation
15 M x 25 mL = 3 M x v2
v2 = 125 mL
The 25 mL concentrated solution should be diluted with distilled water upto 125 mL to make a 3 M solution
Theoretical yield of Al₂O₃: 1.50 mol.
<h3>Explanation</h3>
;
.
How many moles of aluminum oxide formula units will be produced <em>if</em> aluminum is the limiting reactant?
Aluminum reacts to aluminum oxide at a two-to-one ratio.
.
As a result, 3.00 moles of aluminum will give rise to 1.50 moles of aluminum oxide.
How many moles of aluminum oxide formula units will be produced <em>if</em> oxygen is the limiting reactant?
Oxygen reacts to produce aluminum oxide at a three-to-two ratio.

As a result, 2.55 moles of oxygen will give rise to 1.70 moles of aluminum oxide.
How many moles of aluminum oxide formula units will be produced?
Aluminum is the limiting reactant. Only 1.50 moles of aluminum oxide formula units will be produced. 1.70 moles isn't feasible since aluminum would run out by the time 1.50 moles was produced.
STP stands for standard temperature and pressure. Standard pressure is equivalent to 1 atm, and standard temperature is equivalent to 273.15 K. Therefore, your answer is A. the temperature is 273.15 kelvin.
Hope this helps!