1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vekshin1
3 years ago
13

12x+200=644 answer: x=37 whats the variable coefficient and the constant

Mathematics
1 answer:
givi [52]3 years ago
6 0

Hello!

The variable coefficient is a constant that is multiplied by the variable. As you can see, 12 is multiplied by x. Therefore, 12 is our variable coefficient.

Our constant is a number that is not multiplied by a variable. Our two constants are both 200 and 644.

Therefore, our answer is below.

Coefficient: 12

Constants: 200, 644

I hope this helps!

You might be interested in
-2n-13= - 3n - 5 pls solve!
Elis [28]

Answer:

n = 8

Step-by-step explanation:

-2n - 13 = -3n - 5

-2n + 3n = -5 + 13

n = 8

Hope this helps. Have a nice day!

8 0
3 years ago
Read 2 more answers
What are the solutions of the equation (2x + 3)2 + 8(2x + 3) + 11 = 0
Tom [10]

Answer:

x=\frac{-7-\sqrt{5}}{2} or x=\frac{-7+ \sqrt{5}}{2}

Step-by-step explanation:

The given equation is

(2x+3)^2+8(2x+3)+11=0

Let us treat this as a quadratic equation in (2x+3).

where a=1,b=8,c=11

The solution is given by the quadratic formula;

(2x+3)=\frac{-b\pm \sqrt{b^2-4ac} }{2a}

We substitute these values into the formula to obtain;

(2x+3)=\frac{-8\pm \sqrt{8^2-4(1)(11)} }{2(1)}

(2x+3)=\frac{-8\pm \sqrt{64-44} }{2}

(2x+3)=\frac{-8\pm \sqrt{20} }{2}

(2x+3)=\frac{-8\pm2\sqrt{5} }{2}

(2x+3)=-4\pm \sqrt{5}

(2x+3)=-4-\sqrt{5} or (2x+3)=-4+ \sqrt{5}

2x=-3-4-\sqrt{5} or 2x=-3-4+ \sqrt{5}

2x=-7-\sqrt{5} or 2x=-7+ \sqrt{5}

x=\frac{-7-\sqrt{5}}{2} or x=\frac{-7+ \sqrt{5}}{2}

5 0
3 years ago
If u, v, and w are nonzero vectors in r 2 , is w a linear combination of u and v?
Tju [1.3M]
Not necessarily. \mathbf u and \mathbf v may be linearly dependent, so that their span forms a subspace of \mathbb R^2 that does not contain every vector in \mathbb R^2.

For example, we could have \mathbf u=(0,1) and \mathbf v=(0,-1). Any vector \mathbf w of the form (r,0), where r\neq0, is impossible to obtain as a linear combination of these \mathbf u and \mathbf v, since

c_1\mathbf u+c_2\mathbf v=(0,c_1)+(0,-c_2)=(0,c_1-c_2)\neq(r,0)

unless r=0 and c_1=c_2.
8 0
3 years ago
Which of the following is 16 60 in simplest form
Dafna1 [17]
There are no options given, but I will give you the exact answer of 16/60 simplified.

\frac{16}{60} \\ \\ GCF = 4 \\ \\ 16 \div 4 = 4 \\ \\ 60 \div 4 = 15 \\ \\  \frac{4}{15} \\ \\ Answer: \fbox {4/15} \ or \ \fbox {0.2667}
6 0
3 years ago
Read 2 more answers
What is the derivative of 1/square root 4x.
Bumek [7]

Answer:

\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

Exponential Properties

  • Exponential Property [Rewrite]:                                                                   \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Property [Root Rewrite]:                                                           \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)  

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg]

<u>Step 2: Differentiate</u>

  1. Simplify:                                                                                                         \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \bigg( \frac{1}{2\sqrt{x}} \bigg)'
  2. Rewrite [Derivative Property - Multiplied Constant]:                                   \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{\sqrt{x}} \bigg)'
  3. Rewrite [Exponential Rule - Root Rewrite]:                                                 \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{x^\Big{\frac{1}{2}}} \bigg)'
  4. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( x^\bigg{\frac{-1}{2}} \bigg)'
  5. Derivative Rule [Basic Power Rule]:                                                             \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{-1}{2} x^\bigg{\frac{-3}{2}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4} x^\bigg{\frac{-3}{2}}
  7. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

5 0
2 years ago
Other questions:
  • A potter has 9 pounds of clay. he uses 3/10 pound of clay for each Bowl he makes. how many bowls can the Potter make?
    10·1 answer
  • A square has of 30 square meters and a perimeter of 34 meters. what ate the dimensions of the rectangle?
    6·1 answer
  • Gina plotted 3 points from the equation y = x + 2 on this coordinate grid. She drew a straight line through the points.
    10·1 answer
  • How can we put 45 rabbits in 9 cells, so that there are different number of rabbits in each cell and none of the cells is empty?
    5·2 answers
  • What’s the answer and how do I solve it
    5·1 answer
  • The Mt. Aconcagua is 22,834ft tall and Mount Everest is 29,035 feet tall. And he climbed both mountains in two years how many fe
    12·2 answers
  • Which of the following is true? Tangent is positive in Quadrant I. Sine is negative in Quadrant II. Cosine is positive in Quadra
    12·1 answer
  • The amount you pay for a car is not usually the "sticker price", which may be the starting price . The price of a car was reduce
    13·1 answer
  • Help! what is 302938*4043
    5·2 answers
  • 6.39x10^23kg in standard form
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!