Explanation:
A sequence is a list of numbers.
A <em>geometric</em> sequence is a list of numbers such that the ratio of each number to the one before it is the same. The common ratio can be any non-zero value.
<u>Examples</u>
- 1, 2, 4, 8, ... common ratio is 2
- 27, 9, 3, 1, ... common ratio is 1/3
- 6, -24, 96, -384, ... common ratio is -4
___
<u>General Term</u>
Terms of a sequence are numbered starting with 1. We sometimes use the symbol a(n) or an to refer to the n-th term. The general term of a geometric sequence, a(n), can be described by the formula ...
a(n) = a(1)×r^(n-1) . . . . . n-th term of a geometric sequence
where a(1) is the first term, and r is the common ratio. The above example sequences have the formulas ...
- a(n) = 2^(n -1)
- a(n) = 27×(1/3)^(n -1)
- a(n) = 6×(-4)^(n -1)
You can see that these formulas are exponential in nature.
__
<u>Sum of Terms</u>
Another useful formula for geometric sequences is the formula for the sum of n terms.
S(n) = a(1)×(r^n -1)/(r -1) . . . . . sum of n terms of a geometric sequence
When |r| < 1, the sum converges as n approaches infinity. The infinite sum is ...
S = a(1)/(1-r)
Answer:
<em>The domain of f is (-∞,4)</em>
Step-by-step explanation:
<u>Domain of a Function</u>
The domain of a function f is the set of all the values that the input variable can take so the function exists.
We are given the function

It's a rational function which denominator cannot be 0. In the denominator, there is a square root whose radicand cannot be negative, that is, 4-x must be positive or zero, but the previous restriction takes out 0 from the domain, thus:
4 - x > 0
Subtracting 4:
- x > -4
Multiplying by -1 and swapping the inequality sign:
x < 4
Thus the domain of f is (-∞,4)
14 ribbons.
7 divided by 1/2 is 14. dividing by a fraction or decimal is just like multiplying without the decimal point or numerator.
Answer:
20 gmaes in all
Step-by-step explanation:
14/x = 70%
x = 14/70%
Ahh that’s very very very very swag