Volume of pyramid:

A - base area
H - height
First count volume of one pyramid:
![V=\dfrac{1}{3} \cdot 3 \cdot 4=4 [\hbox{inch}^3]](https://tex.z-dn.net/?f=V%3D%5Cdfrac%7B1%7D%7B3%7D%20%5Ccdot%203%20%5Ccdot%204%3D4%20%5B%5Chbox%7Binch%7D%5E3%5D)
So by using 576 inch^3 you can make 576 : 4 =
144 pyramids
Answer: 2/6
Step-by-step explanation:
There’s only 2 numbers greater than 4 on a die, so two would be the numerator and the denominator would be the number of possibilities you could roll, which is 1-6.
Answer:
A. 9.8 ft
Step-by-step explanation:
first convert the degrees to radians:
80° x (pi/180) ≈ 1.396
arc length = r x θ (always in radians)
= 7 x 1.396
= 9.772 ≈ 9.8 ft
1. a = 1/2x - 3
2. a = 2x + 7
Answer:
\frac{15a+20b}{6} 15a+20b/6
Step-by-step explanation:
\mathrm{Apply\:the\:fraction\:rule}:\quad \:a\cdot \frac{b}{c}=\frac{a\cdot \:b}{c}