<span>Energy is calculated by molecule dividing energy by mole by Avogadro's number (6.022*10^23)
941kJ=9.41*10^5 J
so energy by molecule
E= 9.41*10^5/6.022*10^23=1.563*10^-18 J
Wavelength (w) given by E=hc/w
where, E = energy
h = planks constant (6.6262 x 10-34 J·s)
c = speed of light (3 x 10^8 m/s )
So,
w= hc/E
= (6.6262*10^-34)*(3*10^8) /1.563*10^-18
= 127.2 Nm
Longest wavelength of radiation =127.2 Nm</span>
Answer:
Therefore, the brick appears to have an additional force pushing it upward.
Explanation:
When a brick is submerged in the water, it has two forces acting upon it. One force is the gravitational force or the weight of the brick, that acts downward. The weight force also acts on the brick when it is not in water. But, in water an additional force acts on the brick. This additional force is named as Buoyant Force. This force is equal to the weight of the water displaced by the brick. And this Buoyant Force acts on the brick in the upward direction. The formula for this force is given as follows:
Buoyant Force = (Density of Water)(Volume of Water Displaced)(g)
<u>Therefore, the brick appears to have an additional force pushing it upward.</u>
<u></u>
From the definition of apparent magnitude, we know that:

where:
m = apparent magnitude
F = corresponding flux
We also know that the flux is given by the formula:

where:
L = luminosity
d = distance
Therefore:

Now, let's apply these formulae to the same star (therefore, same luminosity), using apparent magnitude and absolute magnitude (which is defined as the apparent magnitude the star would have if it were at a distance of 10pc):

Now, let's solve for m:

= <span>

</span>
= 13
Hence,
the apparent magnitude of the star would be m = +13
Answer:
Rocket 2 has highest acceleration.
Explanation:
Net force,
F = mass (m) × acceleration (a)
We have,
m₁ = 4.25 kg and F = 120 N

m₂ = 3.25 kg, F₂ = 120 N

m₃ = 5.5 kg, F₃ = 120 N

m₄ = 4.5 kg, F₄ = 120 N

Hence, it can be seen that the highest acceleration is of rocket 2.