1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dmitriy555 [2]
3 years ago
6

A 5.00-pf parallel-plate air-filled capacitor with circular plates is to be used in a circuit in which it will be subjected to p

otentials of up to 1.00×102v. the electric field between the plates is to be no greater than 1.00×104n/c. as a budding electrical engineer for live-wire electronics, your task is to design the capacitor by finding what its physical dimensions and separation must be.

Physics
2 answers:
Vika [28.1K]3 years ago
7 0

The surface area of each plate of the capacitor is \boxed{5.65 \times {{10}^{ - 3}}\,{{\text{m}}^2}} and the separation between the plates is \boxed{0.01\,{\text{m}}} or \boxed{10\,{\text{mm}}} or \boxed{1\,{\text{cm}}}.

Further Explanation:

A capacitor is a device which is used to store electric energy in the electric field. The capacitance of the capacitor is the ability of the capacitor to store the charge on it.

Given:

The capacitance \left( C \right) of the capacitor is 5\,{\text{pF}}\,.  

The potential difference across the plates of the capacitor \left( V \right) is {10^2}\,{\text{V}}.  

The electric field between the plates of the capacitor \left( E \right) is {10^4}\,{{\text{V}} \mathord{\left/ {\vphantom {{\text{V}} {\text{m}}}} \right. \kern-\nulldelimiterspace} {\text{m}}}.

Formula and Concept used:  

The expression for electric field intensity within the capacitor is:

E=\dfrac{V}{d}

Simplify the above equation for d.  

\boxed{d=\dfrac{V}{E}}                                                                    …… (1)  

Here, E is the electric field intensity, V is the potential difference across the plates of the capacitor and d is the separation between the parallel plate capacitor.

The expression for the capacitance of the parallel plate capacitor is:

C=\dfrac{{{\varepsilon _0}A}}{d}

Simplify the above equation for area of the plate A.  

\boxed{A=\dfrac{{Cd}}{{{\varepsilon _0}}}}                                          …… (2)  

Here, C is the capacitance of the capacitor , {\varepsilon _0} is the permittivity of the free space or air and A is the area of the each parallel plate in the capacitor.  

Calculation:

Substitute the value of V as {10^2}\,{\text{V}}, {10^4}\,{{\text{V}} \mathord{\left/ {\vphantom {{\text{V}} {\text{m}}}} \right. \kern-\nulldelimiterspace} {\text{m}}} for E in the equation (1).  

\begin{aligned}d&=\frac{{{{10}^2}}}{{{{10}^4}}} \hfill \\&=\frac{1}{{100}} \hfill \\&=0.01\,{\text{m}} \hfill \\ \end{aligned}

Separation between the plates in \text{cm} and \text{mm}.  

\begin{aligned}d&=0.01 \times 100 \hfill \\&=1\text{ cm}\times10\\&=10\,{\text{mm}} \hfill \\ \end{aligned}

Substitute the value of C as 5\,{\text{pF}}\,, d as 0.01\,{\text{m}} and {\varepsilon _0} as 8.85 \times {10^{ - 12}}\,{{\text{F}} \mathord{\left/ {\vphantom {{\text{F}} {\text{m}}}} \right. \kern-\nulldelimiterspace} {\text{m}}} in the equation (2).

\begin{aligned}A&=\frac{{\left( {5 \times {{10}^{ - 12}}} \right)\left( {0.01} \right)}}{{\left( {8.85 \times {{10}^{ - 12}}} \right)}} \\&=5.65 \times {10^{ - 3}}\,{{\text{m}}^2} \\ \end{aligned}

Thus, the surface area of each plate of the capacitor is \boxed{5.65 \times {{10}^{ - 3}}\,{{\text{m}}^2}} and the separation between the plates is \boxed{0.01\,{\text{m}}} or \boxed{10\,{\text{mm}}} or \boxed{1\,{\text{cm}}}.  

Learn more:

1. The component of the lever: brainly.com/question/1073452  

2. Net force on helicopter: brainly.com/question/6125929

3. The energy density: brainly.com/question/9617400

Answer detail:

Grade: High School  

Subject: Physics  

Chapter: Current Electricity  

Keywords:

Parallel plate capacitor, electric field between the plate,separation between the plates, area of the plates, 10mm, 1cm, 0.01 m, 5.65X10^-13m^2, 5.65X10^-13m2, 5.65X10-13m^2, 5.65X10-13m2.

r-ruslan [8.4K]3 years ago
4 0

A 5 <em>pF</em> parallel-plate air-filled capacitor, with a potential difference equal to 100 Volts and an electric field of 10.000 Volts per meter, must have a plate separation of 10 milimeters, and plate's area equal to 0.0056 meters squared.

<h3>Further explanation</h3>

Capacitors are electrical components use to store electrical energy in the form of potential difference. This is done by putting 2 plates of a conductive material very close to each other, but without getting them into contact. The idea is that, when you charge one plate with (for example) positive charges, the other plate will "feel" this and will charge itself with negative charges (due to the attraction between charges of opposite signs).

The trick is that, even though the charges in the two plates attract each other, they can't come into contact since the 2 plates are separated by a certain distance. Now let's suppose there is only air between the capacitor's plates, we know that air is not a conductive material, however if you charge both plates just enough, you'll be able to make air conduct electricity and so charges from one plate will go to the other and equilibrium will be achieved.

This is the same thing that happens when a lightning strikes the ground. Imagine that the Earth is a gigantic capacitor, with the clouds being one plate and the ground being the other plate. When the clouds are charged enough, air is forced to conduct electricity towards the ground (which is the lightning we see), until equilibrium is achieved. This is the reason why, in Physics, we say that everything is a conductive material if you force it just enough.

Back to our problem... We can compute the separation of the capacitor's plates with the following equation:

V = E\cdot d

Which says that the Voltage <em>V</em> is equal to the product of the Electric field <em>E</em> and the distance between the plates <em>d</em>. This equation is valid if the electric field across the capacitor is constant (which for small magnitudes of <em>d</em> it is). So solving for the distance we get:

d= \frac{V}{E} = \frac{100}{10000} \frac{V}{V/m} = 0.01 m = 10 mm

Where we can see that the separation of plates is 10 millimeters. Now for the area between the plates we can use this other formula:

C= \frac{\epsilon \cdot A}{d}

Where \epsilon is the air's permittivity which has a value of around 8.86 \cdot 10^{-12} \frac{F}{m}. By solving for the plate's area, we can find:

A= \frac{C \cdot d}{\epsilon} = 0.0056 m^2 =

Which corresponds to a plate's radius of 42.4 millimeters.

<h3>Learn more</h3>
  • What is electricity: brainly.com/question/9194793
  • Relation between elementary particles and charge: brainly.com/question/12502147
  • Another capacitor problem: brainly.com/question/3203280
<h3>Keywords</h3>

Capacitor, Electric charge, Electric field, Voltage

You might be interested in
You are working with a team that is designing a new roller coaster-type amusement park ride for a major theme park. You are pres
Dominik [7]

Answer:

<em>The required constant friction force for the last 20 m is 6,862.8 N</em>

Explanation:

<u>Energy Conversion</u>

There are several ways the energy is manifested in our physical reality. Some examples are Kinetic, Elastic, Chemical, Electric, Potential, Thermal, Mechanical, just to mention some.

The energy can be converted from one form to another by changing the conditions the objects behave. The question at hand states some types of energy that properly managed, will make the situation keep under control.

Originally, the m=220 kg car is at (near) rest at the top of a h=101 m tall track. We can assume the only energy present at that moment is the potential gravitational energy:

E_1=mgh=220\cdot 9.8\cdot 101=217,756\ J

For the next x1=230 m, a constant friction force Fr1=350 N is applied until it reaches ground level. This means all the potential gravitational energy was converted to speed (kinetic energy K1) and friction (thermal energy W1). Thus

E_1=K_1+W_1

We can compute the thermal energy lost during this part of the motion by using the constant friction force and the distance traveled:

W_1=F_{r1}\cdot x_1=350\cdot 230=80,500\ J

This means that the kinetic energy that remains when the car reaches ground level is

K_1=E_1-W_1=217,756\ J-80,500\ J=137,256\ J

We could calculate the speed at that point but it's not required or necessary. That kinetic energy is what keeps the car moving to its last section of x2=20 m where a final friction force Fr2 will be applied to completely stop it. This means all the kinetic energy will be converted to thermal energy:

W_2=F_{r2}\cdot x_2=137,256

Solving for Fr2

\displaystyle F_{r2}=\frac{137,256}{20}=6,862.8\ N

The required constant friction force for the last 20 m is 6,862.8 N

3 0
3 years ago
Black holes are:
agasfer [191]
Answer to the question provided is A
4 0
4 years ago
Read 2 more answers
The tomato is dropped. What is the velocity, v, of the tomato when it hits the ground? Assume 85.6 % of the work done in Part A
IRISSAK [1]

Answer:

v = 4.1 \sqrt{h}

Explanation:

Let the mass of tomato is m and the height from which it falls is h.

Let the tomato its the ground with velocity v.

The potential energy of the tomato at height h

U = m x g x h

The kinetic energy of tomato as it hits the ground

K = 1/2 mv^2

According to the question,

85.6 % of Potential energy = Kinetic energy

\frac{85.6}{100}\times m\times g\times h = \frac{1}{2}\times m\times v^{2}

v = 4.1 \sqrt{h}

7 0
4 years ago
Read 2 more answers
Does a business day include the day you ordered it?
Daniel [21]
Depends, but generally, it does not include the day the order was placed.
6 0
4 years ago
Read 2 more answers
The momentum of an object is determined to be 7.2 × 10-3 kg⋅m/s. Express this quantity as provided or use any equivalent unit. (
slavikrds [6]

Answer:

Momentum, p = 7.2 g-m/s

Explanation:

It is given that,

The momentum of an object is p=7.2\times 10^{-3}\ kg-m/s

We need to express momentum in any equivalent units. There can be many solutions of this problem. Some of the units of mass are gram, milligram etc. units of length are meters, mm etc.

Since, 1 kg = 1000 gram

So, p=7.2\times 10^{-3}\times 10^3\ g-m/s

Therefore, the momentum of the object is 7.2 g-m/s. Hence, this is the required solution.

6 0
4 years ago
Other questions:
  • The main difference between a series and a parallel circuit is that
    6·1 answer
  • Speed versus Time
    14·1 answer
  • Hypothermia is a condition caused by exercising in extreme heat.
    8·2 answers
  • What net force is required to push a sofa with a mass of 59 kilograms so that it accelerates at 9.75 meters/secondÆ? (Assume a f
    11·2 answers
  • Is it possible to do work on an object without changing the kinetic energy of the object? Now Why?
    7·1 answer
  • I need to draw/write a energy store flow diagrams for a bicycle, lift and food mixer please help
    15·1 answer
  • Insolation is a combination of the following words _____.
    10·1 answer
  • Which of these phrases would go in the overlap? Select two options. A Venn diagram shows the similarities and the differences of
    10·1 answer
  • Justina dreamed last night that she was warding off villains in a life or death battle outside a fortified castle. In the dream,
    7·1 answer
  • question 18(multiple choice worth 1 points) (01.07 mc) the distance of planet jupiter from the sun is approximately 7.8 ⋅ 108 ki
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!