1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kondaur [170]
4 years ago
8

Which of the following correctly shows the quadratic formula for the given equation? 3x2 - 6x + 8 = 0

Mathematics
1 answer:
frez [133]4 years ago
7 0
The quadratic formula is expressed as:

x = (-b +/- √(b^2 - 4ac) ) / 2a

where a, b and c are the coefficients of the quadratic equation with the form ax^2 + bx + c=0

Therefore, the quadratic equation would be:

a = 3
b = -6
c = 8

x = (-(-6) +/- √((-6)^2 - 4(3)(8) ) / 2(3)

Hope this helps.

You might be interested in
HELP ASAP!!!
Umnica [9.8K]
Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation : 

           (a)/(a^2-16)+(2/(a-4))-(2/(a+4))=0 

Simplify ————— a + 4 <span>Equation at the end of step  1  :</span><span> a 2 2 (—————————+—————)-——— = 0 ((a2)-16) (a-4) a+4 </span><span>Step  2  :</span> 2 Simplify ————— a - 4 <span>Equation at the end of step  2  :</span><span> a 2 2 (—————————+———)-——— = 0 ((a2)-16) a-4 a+4 </span><span>Step  3  :</span><span> a Simplify ——————— a2 - 16 </span>Trying to factor as a Difference of Squares :

<span> 3.1 </span>     Factoring: <span> a2 - 16</span> 

Theory : A difference of two perfect squares, <span> A2 - B2  </span>can be factored into <span> (A+B) • (A-B)

</span>Proof :<span>  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 <span>- AB + AB </span>- B2 = 
        <span> A2 - B2</span>

</span>Note : <span> <span>AB = BA </span></span>is the commutative property of multiplication. 

Note : <span> <span>- AB + AB </span></span>equals zero and is therefore eliminated from the expression.

Check : 16 is the square of 4
Check : <span> a2  </span>is the square of <span> a1 </span>

Factorization is :       (a + 4)  •  (a - 4) 

<span>Equation at the end of step  3  :</span> a 2 2 (————————————————— + —————) - ————— = 0 (a + 4) • (a - 4) a - 4 a + 4 <span>Step  4  :</span>Calculating the Least Common Multiple :

<span> 4.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a-4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>101</span><span><span> a-4 </span>111</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 4.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a+4

Making Equivalent Fractions :

<span> 4.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

Two fractions are called <span>equivalent </span>if they have the<span> same numeric value.</span>

For example :  1/2   and  2/4  are equivalent, <span> y/(y+1)2  </span> and <span> (y2+y)/(y+1)3  </span>are equivalent as well. 

To calculate equivalent fraction , multiply the <span>Numerator </span>of each fraction, by its respective Multiplier.

<span> L. Mult. • L. Num. a —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a+4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 4.4 </span>      Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

a + 2 • (a+4) 3a + 8 ————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  4  :</span> (3a + 8) 2 ————————————————— - ————— = 0 (a + 4) • (a - 4) a + 4 <span>Step  5  :</span>Calculating the Least Common Multiple :

<span> 5.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a+4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>111</span><span><span> a-4 </span>101</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 5.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a-4

Making Equivalent Fractions :

<span> 5.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

<span> L. Mult. • L. Num. (3a+8) —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a-4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 5.4 </span>      Adding up the two equivalent fractions 

(3a+8) - (2 • (a-4)) a + 16 ———————————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  5  :</span> a + 16 ————————————————— = 0 (a + 4) • (a - 4) <span>Step  6  :</span>When a fraction equals zero :<span><span> 6.1 </span>   When a fraction equals zero ...</span>

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the <span>denominator, </span>Tiger multiplys both sides of the equation by the denominator.

Here's how:

a+16 ——————————— • (a+4)•(a-4) = 0 • (a+4)•(a-4) (a+4)•(a-4)

Now, on the left hand side, the <span> (a+4) •</span> (a-4)  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   a+16  = 0

Solving a Single Variable Equation :

<span> 6.2 </span>     Solve  :    a+16 = 0<span> 

 </span>Subtract  16  from both sides of the equation :<span> 
 </span>                     a = -16 

One solution was found :

                  <span> a = -16</span>

4 0
3 years ago
A rectangle has a width of 5 yd and a length of 9 yd.
Yuri [45]

Answer:

Option The area is increased by a factor of 16

Step-by-step explanation:

we know that

If two figures are similar, then the ratio of its areas is equal to scale factor squared

Let

z-----> the scale factor

x------> the area of the dilated rectangle

y------> the area of the original rectangle

z^{2}=\frac{x}{y}

we have

z=4 ------> is an enlargement

so

substitute

4^{2}=\frac{x}{y}

16=\frac{x}{y}

x=16y

therefore

The area is increased by a factor of 16


8 0
3 years ago
Read 2 more answers
Use a calculator to find the value of the trigonometric function to four decimal places. Tan 3.4??? A.0.2555 B.0.0594 C.0.9668 D
r-ruslan [8.4K]
The value of Tan 3.4 is 0.059410947 rounded off to four decimal places would equal to 0.0594, letter B. This is your answer if your calculator is in the degree mode. 

Tangent or Tan is one of the trigonometry functions. It represents TOA in the sohcahtoa mnemonic which means Tan = Opposite / Adjacent 
7 0
3 years ago
Find the Perimeter and Area
igor_vitrenko [27]

Answer:

Area = 20.28 cm^2

Perimeter = 16.28 cm

Step-by-step explanation:

The figure is composed of a half circle and a rectangle,

The circle has a diameter of 7 - 2 - 1 = 4cm and the rectangle is of side 2 cm and 7 cm.

Therefore the area is :

Area = A rectangle + Acircle/2 = 2*7 + pi*r^2/2 = 20.28 cm^2

The perimeter is :

Perimiter = 1 + 2 + 7 + Pcircle/2 = 1 + 2 + 7 + 2*pi*r/2 = 16.28 cm

3 0
3 years ago
Which measure of center best represents each set of data?
brilliants [131]
Median= 3
Range= 5
Mode= 3
Mean= 4
8 0
4 years ago
Other questions:
  • Connor earns $1,735 each month and pays $53.10 on electricity. To the nearest tenth of a percent, what percent of Connor's earni
    7·1 answer
  • !!!!!!!!I REALLY NEED HELP I WILL GIVE BRAINLIEST THANKS AND F R I E N D YOU!!!!!!!!!!!!!!!!!!!
    7·2 answers
  • Write an equation for a rational function with:
    7·1 answer
  • If two lines have the same slope, they are _______.
    14·1 answer
  • Find the quotient: 15x^4y^2-30x^2y^3+45xy/5xy is ________. when this quotient is divided by _____the result is x^3y-2xy^2+3
    12·1 answer
  • 1(0.2−0.3) 8=x−0.3 8
    5·1 answer
  • How do you multiply radical expressions
    10·1 answer
  • which equation models the same quadratic relationship as function f? f(x)=x^2+12x+4 a) y=(x-6)^2+40 b) y=(x+6)^2-32 c) y=(x-6)^2
    11·2 answers
  • Solve for x round your answer to the nearest tenth
    15·1 answer
  • 10 6 4 15 6 8 6 15 4 find the median range of the data if necessary round to the nearest tenth
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!