<span>He will experience a gradual drop in his testosterone levels as he ages. This will cause a lowered amount of energy and could cause a slight gain in weight. In addition, he may experience fatigue, a loss of body hair, and a general decrease in his strength.</span>
Answer:
This is an example of "Disruptive selection".
Explanation:
<em>Disruptive selection</em> occurs when <em>selective pressure</em> <em>favor homozygous</em>. In equilibrium, <em>the two alleles might be present or one of them might be lost</em>. If an environment has two extremes, then in these environments, both alleles are presented in homozygous.
The disruptive selection causes an <em>increase</em> in the two types of <em>extreme phenotypes over the intermediate forms</em>. Limits between one extreme and the other are frequently very sharped. Individuals belonging to one phenotype can not live in the same area as individuals belonging to the other phenotype, due to the traits differences between them, competition, or predation.
Populations show two favored extreme phenotypes and a few individuals in the middle. Individuals who survive best are the ones who have traits on the <u>extremes forms</u>. Individuals in <u>the middle</u> are not successful at survival or reproduction.
<em>Color</em> is very important when it comes to <em>camouflage</em>. Dark green caterpillars that live in dark foliage and light green caterpillars that live in light foliage can <em>hide from predators</em> more effectively and will live the longest. Intermediate colored green caterpillars that don't camouflage or blend into either will be eaten more quickly.
Answer:
It requires energy
Explanation:
In the coupled transport system, coupled carriers couple the inward transport of one solute across the membrane to the outward transport of other solutes across the membrane. The tight bonding that occurs between the transport of two solutes allows these carriers to utilize the energy stored in one solute, usually an ion, to facilitate transport of the other. With this way, the free energy released during the movement of an ion down an electrochemical gradient is utilized as the driving force to transport other solutes inwards, against their electrochemical gradient.
Answer:
Karyogram of a male with Down syndrome.
Your answer is leukocytes.