You have the right idea that things need to get multiplied.
What should be done is that the entire fraction needs to get multipled by the lowest common denominator of both denominators.
Let's look at the complex numerator. Its denominators are 5 and x + 6. Nothing is common with these, so both pieces are needed.
The complex denominator has x - 3 as its denominator. With nothing in common between it and the complex numerator, that piece is needed.
So we multiply the entire complex fraction by (5)(x + 6)(x -3).
Numerator: 
= (x+6)(x-3) - (5)(5)(x-3)
= (x+6)(x-3) - 25(x-3)
= (x-3)(x + 6 - 25) <--- by group factoring the common x - 3
= (x -3)(x - 19)
Denominator:

Now we put the pieces together.
Our fraction simplies to (x - 3) (x - 19) / 125 (x + 6)
Answer:
13.5
Step-by-step explanation:
4+5 = 9.
9/2 = 4.5
4.5 * 3 = 13.5
Answer:
2.28% of tests has scores over 90.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What proportion of tests has scores over 90?
This proportion is 1 subtracted by the pvalue of Z when X = 90. So



has a pvalue of 0.9772.
So 1-0.9772 = 0.0228 = 2.28% of tests has scores over 90.