G = number of green = 7
S = number of striped = 8
T = number total = 10+7+8 = 25
probability of picking green = P(G) = G/T = 7/25
probability of picking striped = P(S) = S/T = 8/25
P(green and striped) = P(G)*P(S) ... events are independent
P(green and striped) = (7/25)*(8/25)
P(green and striped) = (7*8)/(25*25)
P(green and striped) = 56/625
P(green and striped) = 0.0896
--------------------------------
In summary, the answer as a fraction is 56/625
In decimal form, the answer is 0.0896
The value 0.0896 can be converted to percent form to get 8.96%
Answer:
In a rhombus, the diagonals bisect at right angles. That means half the diagonals form a right angle triangle then we can try the Pythagorean theorem. so -
one side of triangle = 6/2 =3 (half of the diagonal)
other side = 8/2 = 4
a^2 + b^2 = c2
3 ^2 + 4^2 = c^2
9+16 = c^2
c^2=25
c =
= 5
the hypothenus forms one side of the rhombus and here the hypothenus is 5, so the lenght of a side is 5 !
Answer:
Minimum value of function
is 63 occurs at point (3,6).
Step-by-step explanation:
To minimize :

Subject to constraints:

Eq (1) is in blue in figure attached and region satisfying (1) is on left of blue line
Eq (2) is in green in figure attached and region satisfying (2) is below the green line
Considering
, corresponding coordinates point to draw line are (0,9) and (9,0).
Eq (3) makes line in orange in figure attached and region satisfying (3) is above the orange line
Feasible region is in triangle ABC with common points A(0,9), B(3,9) and C(3,6)
Now calculate the value of function to be minimized at each of these points.

at A(0,9)

at B(3,9)

at C(3,6)

Minimum value of function
is 63 occurs at point C (3,6).
Answer:
80000
Step-by-step explanation: