Answer:
The limit that 97.5% of the data points will be above is $912.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

Find the limit that 97.5% of the data points will be above.
This is the value of X when Z has a pvalue of 1-0.975 = 0.025. So it is X when Z = -1.96.
So




The limit that 97.5% of the data points will be above is $912.
Answer:
Step-by-step explanations:
10x - 2x
8x

----------------------------------------------
Find 1 cup :
----------------------------------------------



----------------------------------------------
Find 4 cups :
----------------------------------------------


--------------------------------------------------------------------------------------------
Answer: John can make 6 batches with 4 cups of flour.--------------------------------------------------------------------------------------------
Answer:
Choice A)
.
Step-by-step explanation:
What are the changes that would bring
to
?
- Translate
to the left by
unit, and - Stretch
vertically (by a factor greater than
.)
. The choices of
listed here are related to
:
- Choice A)
; - Choice B)
; - Choice C)
; - Choice D)
.
The expression in the braces (for example
as in
) is the independent variable.
To shift a function on a cartesian plane to the left by
units, add
to its independent variable. Think about how
, which is to the left of
, will yield the same function value.
Conversely, to shift a function on a cartesian plane to the right by
units, subtract
from its independent variable.
For example,
is
unit to the left of
. Conversely,
is
unit to the right of
. The new function is to the left of
. Meaning that
should should add
to (rather than subtract
from) the independent variable of
. That rules out choice B) and D).
- Multiplying a function by a number that is greater than one will stretch its graph vertically.
- Multiplying a function by a number that is between zero and one will compress its graph vertically.
- Multiplying a function by a number that is between
and zero will flip its graph about the
-axis. Doing so will also compress the graph vertically. - Multiplying a function by a number that is less than
will flip its graph about the
-axis. Doing so will also stretch the graph vertically.
The graph of
is stretched vertically. However, similarly to the graph of this graph
, the graph of
increases as
increases. In other words, the graph of
isn't flipped about the
-axis.
should have been multiplied by a number that is greater than one. That rules out choice C) and D).
Overall, only choice A) meets the requirements.
Since the plot in the question also came with a couple of gridlines, see if the points
's that are on the graph of
fit into the expression
.
The easiest way is to try the point (-4,1), that is, x=-4, y=1,
to see which equation works.
b works.
The usual way to do it is to find the equation of the circle
standard form of a circle is (x-h)²+(y-k)²=r², (h,k) are the coordinates of the center, r is the radius.
in this case, the center is (-2,1), so (x+2)²+(y-1)²=r²
the given point (-4,1) is for you to find r: (-4+2)²+(1-1)²=r², r=2
so the equation is (x+2)²+(y-1)²=2²
expand it: x²+4x+4+y²-2y+1=4
x²+y²+4x-2y+1=0, which is answer b.