The function g(x) is created by applying an <em>horizontal</em> translation 4 units left and a reflection over the x-axis. (Correct choices: Third option, fifth option)
<h3>How to determine the characteristics of rigid transformations by comparing two functions</h3>
In this problem we have two functions related to each other because of the existence of <em>rigid</em> transformations. <em>Rigid</em> transformations are transformations applied to <em>geometric</em> loci such that <em>Euclidean</em> distance is conserved at every point of the <em>geometric</em> locus.
Let be f(x) = - 2 · cos (x - 1) + 3, then we use the concept of <em>horizontal</em> translation 4 units in the + x direction:
f'(x) = - 2 · cos (x - 1 + 4) + 3
f'(x) = - 2 · cos (x + 3) + 3 (1)
Now we apply a reflection over the x-axis:
g(x) = - [- 2 · cos (x + 3) + 3]
g(x) = 2 · cos (x + 3) - 3
Therefore, the function g(x) is created by applying an <em>horizontal</em> translation 4 units left and a reflection over the x-axis. (Correct choices: Third option, fifth option)
To learn more on rigid transformations: brainly.com/question/1761538
#SPJ1
Answer: x < 30
Step-by-step explanation:
Let the cost of a jean be x
cost of a shirt = $25
cost of 3 jeans = 3x
since he wants to spend less than $115 , this means that
3x + 25 < 115
3x < 115 - 25
3x < 90
x < 30
Answer:
the solution is (-4, 3)
Step-by-step explanation:
if you were to graph y = -7/4x - 4 you could plot your first point at (0, -4) and get your second point by going up 7 units (from (0, -4) and to the left by 4
if you were to graph y = -1/4x + 2 you could plot your first point at (0, 2) and get your second point by going up 1 unit (from (0, 2) and to the left by 4
the second point plotted for each equation will be the point of intersection, (-4, 3)
Answer:
5:24
Step-by-step explanation:
We're provided with the number of rebounds as 90 while the points are 432. Expressing them into ratio of rebounds to steals we have
90:432
Simplification:
Dividing both sides by 2 we obtain
45:216
Dividing both sides of the above ratio by 3 we obtain
15:72
Dividing both sides of the above ratio further by 3 we obtain
5:24
Therefore, rhe simplified ratio of rebounds ro steals is 5:24