1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexandr402 [8]
3 years ago
9

12.what is the probability that a boy and a girl chosen randsomly will be seniors?

Mathematics
1 answer:
zhenek [66]3 years ago
3 0

\frac{\textbf{1}}{\textbf{20}}

Step-by-step explanation:

Probability=\frac{\text{number of favourable outcomes}}{\text{total number of outcomes}}

Probability for a randomly chosen girl to be senior=\frac{\text{number of senior girls}}{\text{total number of girls}}

Probability for a randomly chosen girl to be senior=\frac{7}{8+11+9+7}=\frac{7}{35}=\frac{1}{5}

Probability for a randomly chosen boy to be senior=\frac{\text{number of senior boys}}{\text{total number of boys}}

Probability for a randomly chosen girl to be senior=\frac{9}{10+7+10+9}=\frac{9}{36}=\frac{1}{4}

For two independent events,

Probability for both event 1 and event 2 to take place=\text{probability of event 1} \times \text{probability of event 2}

Since choosing boys and girls is independent,

Probability for both boy an girl chosen to be senior=\text{probability for boy to be senior}\times\text{probability for girl to be senior}

Probability for both boy and girl chosen to be senior=\frac{1}{5} \times \frac{1}{4} = \frac{1}{20}

So,required probability is \frac{1}{20}

You might be interested in
A dartboard consists of two concentric circles. The probability of hitting the inner circle is
stepan [7]
Given:
Diameter of outer circle = 20 inches.

We need to find the Area of the outer circle to get the radius of the inner circle.

Area = πr²

Outer circle Area = 3.14 * (10in)² = 314 in²

314 in² * 64% probability = 200.96 in² Area of the inner circle.

200.96 in² = 3.14 * r²
200.96 in² / 3.14 = r²
64 in² = r²
√64 in² = √r²
8 in = r

radius of inner circle is 8 inches.
3 0
3 years ago
In a certain sequence of numbers, each term after the first is found by doubling and then adding $3$ to the previous term. If th
eimsori [14]
Given a_7=125 you can find a_6:

a_6= \frac{125-3}{2} =61
 a_5= \frac{61-3}{2} =29 \\ a_4= \frac{29-3}{2}=13 \\ a_3= \frac{13-3}{2} =5 \\ a_2= \frac{5-3}{2} =1 \\ a_1= \frac{1-3}{2}=-1
Answer: -1
6 0
3 years ago
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
Solve the inequality x + 2 1/2 > -1/2. Graph the solution set on a number line.show your work.
antiseptic1488 [7]

Answer:

x > - 3

Step-by-step explanation:

x + 2\frac{1}{2} > - \frac{1}{2}      First turn 2\frac{1}{2} into an fraction since its easier. So it becomes \frac{5}{2}

x + \frac{5}{2} > - \frac{1}{2}

<u>   - </u>\frac{5}{2}<u>     - </u>\frac{5}{2}<u>  </u>       Do inverse operations, so subtract \frac{5}{2} from both sides.

    x > - \frac{6}{2}          Combine  - \frac{5}{2} with - \frac{1}{2}, which gives us - \frac{6}{2}

    x > - 3          Since we know that 6 divided by 2 is 3.

This would not allow me to attach an image so I am going to type a visual representation f what the graph would look like below)

<-------------O--------------------------------------------------->

-5    -4     -3      -2       -1     0     1     2    3    4     5

So, the number line would be a solid line rather than dashed (but I was not able to attach an image so I kind of had to improvise). When using ≥ ≤ sings the circle of the point is closed. When using < and > signs, the circle of the point is open. Thus, in this scenario since he sign is >, then the circle of the point is open. The direction of the arrow and ray for this equality is going to the right because the answer is that x is greater than - 3, Therefore any values greater than - 3 are a possibility which is why the arrow goes on indefinitely.

 

4 0
3 years ago
Susan put the following numbers together.27 thousands,41 hundreds,15 tens and 8 ones. write this number in standard form.
MArishka [77]
27258 tell me if i wrong plz
5 0
3 years ago
Other questions:
  • Write 0.33 as a fraction in simplest form
    5·2 answers
  • Rita is spending more time at home to study and practice math. Her efforts are finally paying off. On her first assessment she s
    7·1 answer
  • 25 students are learning how to make balloon animals. There are 194 balloons to be shared equally among the students. How many b
    13·1 answer
  • Question 3
    9·1 answer
  • Convert 21/40 to a percent
    12·2 answers
  • An 11-ft ladder leans against the side of a house. The bottom of the ladder is 9-ft from the side of the house. How high is the
    10·1 answer
  • Please help! see attached
    5·2 answers
  • Which numbers belong to the solution set of the inequality x/8 &lt;-10
    9·1 answer
  • Five standard six-sided dice are rolled. What is the probability that at least three of them show a 6?
    7·1 answer
  • 16) The zero of a polynomial ax+b (a is not zero) is<br><br>a/b<br>b/a<br>-a/b<br>-b/a​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!