Answer:
9.09 , 0.9 , 0.09 , 0.009 , 0.0009
Explanation:
The more places behind a decimal point a number is, the smaller it is
Hope this helped you! :)
Answer:
First option: The slope is negative for both functions.
Fourth option: The graph and the equation expressed are equivalent functions.
Step-by-step explanation:
<h3>
The missing graph is attached.</h3><h3>
</h3>
The equation of the line in Slope-Intercept form is:

Where "m" is the slope and "b" is the y-intercept.
Given the equation:

We can identify that:

Notice that the slope is negative.
We can observe in the graph that y-intercept of the other linear function is:

Then, we can substitute this y-intercept and the coordinates of a point on that line, into
and solve for "m".
Choosing the point
, we get:

Notice that the slope is negative.
Therefore, since the lines have the same slope and the same y-intercept, we can conclude that they are equivalent.
Answer:
The distance between the cruise ship and the sail boat is 517 feet.
Step-by-step explanation:
The cruise ship is 236 feet tall, and the sailboat is 236 tall; this means the distance between the top of the cruise ship and the top of the sail boat is
236 feet - 27 feet = 209 feet.
We also know that the angel of depression from the top of the cruise ship to the bottom of the cruise ship is 22°. This forms a right triangle as shown in the figure attached.
Now from trigonometry we get:



The distance between the cruise ship and the sailboat is 517 feet.
![\bf sin^2(\theta)+cos^2(\theta)=1\implies cos^2(\theta)=1-sin^2(\theta) \\\\\\ tan(\theta)=\cfrac{sin(\theta)}{cos(\theta)}\\\\ -----------------------------\\\\ 2cos(A)=3tan(A)\implies 2cos(A)=3\cfrac{sin(A)}{cos(A)} \\\\\\ 2cos^2(A)=3sin(A)\implies 2[1-sin^2(A)]=3sin(A) \\\\\\ 2-2sin^2(A)=3sin(A)\implies 2sin^2(A)+3sin(A)-2](https://tex.z-dn.net/?f=%5Cbf%20sin%5E2%28%5Ctheta%29%2Bcos%5E2%28%5Ctheta%29%3D1%5Cimplies%20cos%5E2%28%5Ctheta%29%3D1-sin%5E2%28%5Ctheta%29%0A%5C%5C%5C%5C%5C%5C%0Atan%28%5Ctheta%29%3D%5Ccfrac%7Bsin%28%5Ctheta%29%7D%7Bcos%28%5Ctheta%29%7D%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0A%0A2cos%28A%29%3D3tan%28A%29%5Cimplies%202cos%28A%29%3D3%5Ccfrac%7Bsin%28A%29%7D%7Bcos%28A%29%7D%0A%5C%5C%5C%5C%5C%5C%0A2cos%5E2%28A%29%3D3sin%28A%29%5Cimplies%202%5B1-sin%5E2%28A%29%5D%3D3sin%28A%29%0A%5C%5C%5C%5C%5C%5C%0A2-2sin%5E2%28A%29%3D3sin%28A%29%5Cimplies%202sin%5E2%28A%29%2B3sin%28A%29-2)
![\bf \\\\\\ 0=[2sin(A)-1][sin(A)+2]\implies \begin{cases} 0=2sin(A)-1\\ 1=2sin(A)\\ \frac{1}{2}=sin(A)\\\\ sin^{-1}\left( \frac{1}{2} \right)=\measuredangle A\\\\ \frac{\pi }{6},\frac{5\pi }{6}\\ ----------\\ 0=sin(A)+2\\ -2=sin(A) \end{cases}](https://tex.z-dn.net/?f=%5Cbf%20%5C%5C%5C%5C%5C%5C%0A0%3D%5B2sin%28A%29-1%5D%5Bsin%28A%29%2B2%5D%5Cimplies%20%0A%5Cbegin%7Bcases%7D%0A0%3D2sin%28A%29-1%5C%5C%0A1%3D2sin%28A%29%5C%5C%0A%5Cfrac%7B1%7D%7B2%7D%3Dsin%28A%29%5C%5C%5C%5C%0Asin%5E%7B-1%7D%5Cleft%28%20%5Cfrac%7B1%7D%7B2%7D%20%5Cright%29%3D%5Cmeasuredangle%20A%5C%5C%5C%5C%0A%5Cfrac%7B%5Cpi%20%7D%7B6%7D%2C%5Cfrac%7B5%5Cpi%20%7D%7B6%7D%5C%5C%0A----------%5C%5C%0A0%3Dsin%28A%29%2B2%5C%5C%0A-2%3Dsin%28A%29%0A%5Cend%7Bcases%7D)
now, as far as the second case....well, sine of anything is within the range of -1 or 1, so -1 < sin(A) < 1
now, we have -2 = sin(A), which simply is out of range for a valid sine, so there's no angle with such sine
so, only the first case are the valid angles for A