well, we know it's a rectangle, so that means the sides JK = IL and JI = KL, so
![\stackrel{JK}{3x+21}~~ = ~~\stackrel{IL}{6y}\implies 3(x+7)=6y\implies x+7=\cfrac{6y}{3} \\\\\\ x+7=2y\implies \boxed{x=2y-7} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{JI}{6y-6}~~ = ~~\stackrel{KL}{2x+20}\implies 6(y-1)=2(x+10)\implies \cfrac{6(y-1)}{2}=x+10 \\\\\\ 3(y-1)=x+10\implies 3y-3=x+10\implies \stackrel{\textit{substituting from the 1st equation}}{3y-3=(2y-7)+10} \\\\\\ 3y-3=2y+3\implies y-3=3\implies \blacksquare~~ y=6 ~~\blacksquare ~\hfill \blacksquare~~ \stackrel{2(6)~~ - ~~7}{x=5} ~~\blacksquare](https://tex.z-dn.net/?f=%5Cstackrel%7BJK%7D%7B3x%2B21%7D~~%20%3D%20~~%5Cstackrel%7BIL%7D%7B6y%7D%5Cimplies%203%28x%2B7%29%3D6y%5Cimplies%20x%2B7%3D%5Ccfrac%7B6y%7D%7B3%7D%20%5C%5C%5C%5C%5C%5C%20x%2B7%3D2y%5Cimplies%20%5Cboxed%7Bx%3D2y-7%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7BJI%7D%7B6y-6%7D~~%20%3D%20~~%5Cstackrel%7BKL%7D%7B2x%2B20%7D%5Cimplies%206%28y-1%29%3D2%28x%2B10%29%5Cimplies%20%5Ccfrac%7B6%28y-1%29%7D%7B2%7D%3Dx%2B10%20%5C%5C%5C%5C%5C%5C%203%28y-1%29%3Dx%2B10%5Cimplies%203y-3%3Dx%2B10%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bsubstituting%20from%20the%201st%20equation%7D%7D%7B3y-3%3D%282y-7%29%2B10%7D%20%5C%5C%5C%5C%5C%5C%203y-3%3D2y%2B3%5Cimplies%20y-3%3D3%5Cimplies%20%5Cblacksquare~~%20y%3D6%20~~%5Cblacksquare%20~%5Chfill%20%5Cblacksquare~~%20%5Cstackrel%7B2%286%29~~%20-%20~~7%7D%7Bx%3D5%7D%20~~%5Cblacksquare)
Answer:
I'm not sure what you are asking for?
Step-by-step explanation:
The 5 in the tens place = 50, and the 5 in the hundreds place = 500.
To compare them (Are you asking me for the difference between them???), then, 500 - 50 = 450.
But, again, I'm not sure what you want.
Answer:
<em>The percent error of the cyclist's estimate is 5.63%</em>
Step-by-step explanation:
<u>Percentages</u>
The cyclist estimates he will bike 80 miles this week, but he really bikes 75.5 miles.
The error of his estimate in miles can be calculated as the difference between his estimate and the real outcome:
Error = 80 miles - 75.5 miles = 4.5 miles
To calculate the error as a percent, we divide that quantity by the original estimate and multiply by 100%:
Error% = 4.5 / 80 * 100 = 5.625%
Rounding to the nearest hundredth:
The percent error of the cyclist's estimate is 5.63%
To find the inverse all you do is swap your x and y then solve it through. for this one you gotta take f(x) and make it y
y = 1/4x - 12
then swap
x = 1/4y - 12
then solve it through
x - 12 = 1/4y
divide by (1/4)
and (x - 12)4 = y should be your answer