1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kipiarov [429]
3 years ago
11

You bike for 7 miles and ran for 3 1/2 miles. What is the unit rate of miles biked to miles run?

Mathematics
1 answer:
ExtremeBDS [4]3 years ago
4 0
I think you mean: what is the ratio of biking to running, if this is the case it is 2:1.

I hope this helps you.
You might be interested in
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
The graph of the function B is shown below. If B(x) = -1, then what is x?
GREYUIT [131]
The answer is c, 2.To find this, look on the graph for a point with the y value of -1. (2,-1) is the solution.
3 0
3 years ago
Read 2 more answers
Jada has 12 pencils and 24 erasers. She wants to create identical groups. What is the
nekit [7.7K]

Answer:

12

Step-by-step explanation:

6 0
3 years ago
Let f(x)=−1/4(x+4)^2−8 . What is the average rate of change for the quadratic function from x=−2 to x = 2? Enter your answer in
kiruha [24]

Answer:

Average rate of change of function is -2.

Step-by-step explanation:

Given f(x)=\frac{-1}{4}(x+4)^2-8.

we have to find the average rate of change for the quadratic function from x=−2 to x = 2.

f(-2)=\frac{-1}{4}(-2+4)^2-8=\frac{-1}{4}(4)-8=-9

f(2)=\frac{-1}{4}(2+4)^2-8=\frac{-1}{4}(36)-8=-17

The average rate of change of the function  f(x) on interval [-2,2] is

\frac{f(b)-f(a)}{b-a}=\frac{f(2)-f(-2)}{2-(-2)}=\frac{-17-(-9)}{4}=\frac{-8}{4}=-2

3 0
4 years ago
PLEASE I NEED HELP AND I ONLY HAVE AN HR Question 2 (4 points)
garik1379 [7]

Answer:

The answer is A

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • 10 POINTS!
    6·1 answer
  • The ratio of red to greens was 5 to 16 and six times the number of reds exceeded the number of greens by 112. How many were red
    11·1 answer
  • When 30% of a number is added to the number, the result is 130.
    5·1 answer
  • The temperature dropped 5 degrees every hour during 8 hours. How much the temperature drop in all?
    7·1 answer
  • What is the lateral area of the drawing?
    10·2 answers
  • 9 + (-3) = <br> please explain to me how you got your answer too thanks
    12·2 answers
  • What do large differences of the means of each group indicate? Select the correct answer. The large differences do not indicate
    9·1 answer
  • Help me please ?????
    12·1 answer
  • Please someone help!!!
    9·2 answers
  • Which expression is equal to 4(2+3)?<br> A. 8 + 3<br> B. 4 + 5<br> C. 2 + 12<br> D. 8 + 12
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!