Answer:
(i) 1/6
(ii) 1/2
(iii) 1/6
Explanation:
When two fair dice are tossed,
Total possible outcomes,
n(S) = 6 × 6 = 36, ( ∵ outcome when a dice is tossed = 6 )
(i) If E = {The numbers are equal }
= { (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}
⇒ n(E) = 6,
![\text{Probability}=\frac{\text{Favourable outcomes}}{\text{Total outcomes}}](https://tex.z-dn.net/?f=%5Ctext%7BProbability%7D%3D%5Cfrac%7B%5Ctext%7BFavourable%20outcomes%7D%7D%7B%5Ctext%7BTotal%20outcomes%7D%7D)
Thus,
![P(E) =\frac{n(E)}{n(S)}=\frac{6}{36}=\frac{1}{6}](https://tex.z-dn.net/?f=P%28E%29%20%3D%5Cfrac%7Bn%28E%29%7D%7Bn%28S%29%7D%3D%5Cfrac%7B6%7D%7B36%7D%3D%5Cfrac%7B1%7D%7B6%7D)
(ii) Since, even + even = even and odd + odd = even,
If F = {The sum of the numbers is even}
F = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 3), (1, 5), (2, 4), (2, 6), (3, 1), (3, 5), (4, 2), (4, 6), (5, 1), (5, 3), (6, 2), (6, 4)}
⇒ n(F) = 18,
![P(E) =\frac{18}{36}=\frac{1}{2}](https://tex.z-dn.net/?f=P%28E%29%20%3D%5Cfrac%7B18%7D%7B36%7D%3D%5Cfrac%7B1%7D%7B2%7D)
(iii) E∩F = E,
⇒ n(E∩F) = 6,
![P(E\cap F) =\frac{1}{6}](https://tex.z-dn.net/?f=P%28E%5Ccap%20F%29%20%3D%5Cfrac%7B1%7D%7B6%7D)