Subtract 10x
10x + y = -19
10x + 3y = -17
You would get:
-2y = -2
Two negatives make a positive number! Divide
y = 1
Plug in
10x + (1) = -19
10x = -20
Divide
x = -2
Your solutions are
x = -2
y = 1
Linear functions have the general form y=mx+b, where m is the slope. The first function has a slope of 2, while the second one has a slope of -1, so y=2x+1 has a greater slope.
let's bear in mind that B is the midpoint and thus it cuts a segment into two equal halves.
![\bf \underset{\leftarrow \qquad \textit{\large 10x-6}\qquad \to }{\boxed{A}\stackrel{4x+2}{\rule[0.35em]{10em}{0.25pt}} B\stackrel{\underline{4x+2}}{\rule[0.35em]{10em}{0.25pt}\boxed{C}}} \\\\\\ AC=AB+BC\implies 10x-6=(4x+2)+(4x+2)\implies 10x-6=8x+4 \\\\\\ 2x-6=4\implies 2x=10\implies x=\cfrac{10}{2}\implies x= 5 \\\\[-0.35em] ~\dotfill\\\\ AC=(4x+2)+(4x+2)\implies AC=[4(5)+2]+[4(5)+2] \\\\\\ AC=22+22\implies AC=44](https://tex.z-dn.net/?f=%5Cbf%20%5Cunderset%7B%5Cleftarrow%20%5Cqquad%20%5Ctextit%7B%5Clarge%2010x-6%7D%5Cqquad%20%5Cto%20%7D%7B%5Cboxed%7BA%7D%5Cstackrel%7B4x%2B2%7D%7B%5Crule%5B0.35em%5D%7B10em%7D%7B0.25pt%7D%7D%20B%5Cstackrel%7B%5Cunderline%7B4x%2B2%7D%7D%7B%5Crule%5B0.35em%5D%7B10em%7D%7B0.25pt%7D%5Cboxed%7BC%7D%7D%7D%20%5C%5C%5C%5C%5C%5C%20AC%3DAB%2BBC%5Cimplies%2010x-6%3D%284x%2B2%29%2B%284x%2B2%29%5Cimplies%2010x-6%3D8x%2B4%20%5C%5C%5C%5C%5C%5C%202x-6%3D4%5Cimplies%202x%3D10%5Cimplies%20x%3D%5Ccfrac%7B10%7D%7B2%7D%5Cimplies%20x%3D%205%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20AC%3D%284x%2B2%29%2B%284x%2B2%29%5Cimplies%20AC%3D%5B4%285%29%2B2%5D%2B%5B4%285%29%2B2%5D%20%5C%5C%5C%5C%5C%5C%20AC%3D22%2B22%5Cimplies%20AC%3D44)
The situation can be modeled by a geometric sequence with an initial term of 284. The student population will be 104% of the prior year, so the common ratio is 1.04.
Let \displaystyle PP be the student population and \displaystyle nn be the number of years after 2013. Using the explicit formula for a geometric sequence we get
{P}_{n} =284\cdot {1.04}^{n}P
n
=284⋅1.04
n
We can find the number of years since 2013 by subtracting.
\displaystyle 2020 - 2013=72020−2013=7
We are looking for the population after 7 years. We can substitute 7 for \displaystyle nn to estimate the population in 2020.
\displaystyle {P}_{7}=284\cdot {1.04}^{7}\approx 374P
7
=284⋅1.04
7
≈374
The student population will be about 374 in 2020.
Answer:
Option B. A = (5/6)^-⅛
Step-by-step explanation:
From the question given above, we obtained:
(5/6)ˣ = A¯⁸ˣ
We can obtain the value of A as follow:
(5/6)ˣ = A¯⁸ˣ
Cancel x from both side
5/6 = A¯⁸
Recall:
M¯ⁿ = 1/Mⁿ
A¯⁸ = 1/A⁸
Thus,
5/6 = 1/A⁸
Cross multiply
5 × A⁸ = 6
Divide both side by 5
A⁸ = 6/5
Take the 8th root of both sides
A = ⁸√(6/5)
Recall
ⁿ√M = M^1/n
Thus,
⁸√(6/5) = (6/5)^⅛
Therefore,
A = (6/5)^⅛
Recall:
(A/B)ⁿ = (B/A)¯ⁿ
(6/5)^⅛ = (5/6)^-⅛
Therefore,
A = (5/6)^-⅛