D is the answer to this question
Answer:

Step-by-step explanation:
Let:

We need to eliminate one of the variables, so let's use elimination method. First multiply (1) by 2

Now subtract (2) from 2*(1) in order to eliminate x:

Solving for y:
Multiplying both sides by -1

Finally, replacing the value of y in (1)

Solving for x:
add 41 to both sides:

Multiply both sides by 1/2:

Answer: Explicit Rule: a_n=30,000 • 2^n-1
Recursive Rule: a_n = 2a_n-1; a_1 = 30,000
Step-by-step explanation: the explicit rule for a geometric sequence is a_n = a_1 • r^n-1 and the recursive rule is a_n= r • a_n -1.
a_1 is the first term of the sequence, which is this case is 30,000. R is the common ration, which is 2 since it doubles each time. Substitute those numbers into the formulas and that’s what you’ll get. Hope this helps. God bless you!!!
The volume of a rectangular prism is (length) x (width) x (height).
The volume of the big one is (2.25) x (1.5) x (1.5) = <em>5.0625 cubic inches</em>.
The volume of the little one is (0.25)x(0.25)x(0.25)= 0.015625 cubic inch
The number of little ones needed to fill the big one is
(Volume of the big one) divided by (volume of the little one) .
5.0625 / 0.015625 = <em>324 tiny cubies</em>
=================================================
Doing it with fractions instead of decimals:
The volume of a rectangular prism is (length) x (width) x (height).
Dimensions of the big one are:
2-1/4 = 9/4
1-1/2 = 3/2
1-1/2 = 3/2
Volume = (9/4) x (3/2) x (3/2) =
(9 x 3 x 3) / (4 x 2 x 2) =
81 / 16 cubic inches.
As a mixed number: 81/16 = <em>5-1/16 cubic inches</em>
Volume of the tiny cubie = (1/4) x (1/4) x (1/4) = 1/64 cubic inch.
The number of little ones needed to fill the big one is
(Volume of the big one) divided by (volume of the little one) .
(81/16) divided by (1/64) =
(81/16) times (64/1) =
5,184/16 = <em>324 tiny cubies</em>.
Answer:
boom box second one one my bad just need points my g
Step-by-step explanation: