3x - y + z = 5 . . . (1)
x + 3y + 3z = -6 . . . (2)
x + 4y - 2z = 12 . . . (3)
From (2), x = -6 - 3y - 3z . . . (4)
Substituting for x in (1) and (3) gives
3(-6 - 3y - 3z) - y + z = 5 => -18 - 9y - 9z - y + z = 5 => -10y - 8z = 23 . . (5)
-6 - 3y - 3z + 4y - 2z = 12 => y - 5z = 18 . . . (6)
(6) x 10 => 10y - 50z = 180 . . . (7)
(5) + (7) => -58z = 203
z = 203/-58 = -3.5
From (6), y - 5(-3.5) = 18 => y = 18 - 17.5 = 0.5
From (4), x = -6 - 3(0.5) - 3(-3.5) = -6 - 1.5 + 10.5 = 3
x = 3, y = 0.5, z = -3.5
Step-by-step explanation:
20miles per hour HAVE A GOOD DAY
Given:
The graph of a function.
To find:
The zeros of this function on the graph.
Solution:
We know that, zeros are the values at which the values of the function is 0. It means, the points where the graph of function intersect the x-axis are know as zeros of the function.
From the given graph it is clear that, the graph intersect the x-axis at two points.
Therefore, the marked points on the below graph are the zeros of the function.
Let p = weight of papaya and g = weight of grapes.
Then (3/4)g = (3/5)p. Since the weight of grapes is x + 28,
(3/4)(x + 28) = (3/5)p. We must solve for x. To do this, mult. both sides by (5/3):
(5/3)(3/4)(x+28) = (5/3)(3/5)p
Then p = (15/9)(x+28), or (after reduction), p = (5/3)(x+28).
the lateral area and total area of regular pyramid with a square base is 130