1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mars1129 [50]
4 years ago
5

A triangular brace has an angle measure of 30 degrees, with a side opposite this angle measuring 8 inches. The base of the trian

gular brace, which is adjacent to the given angle measure, is 11 inches in length. Which of the following statements is correct

Mathematics
1 answer:
Ad libitum [116K]4 years ago
7 0

Answer:

C

Step-by-step explanation:

according to sine rule,

sin(30)/8=sin(x)/11

solving above equation will give

x=43.3

You might be interested in
Brian gave 1/4 of his stickers to Pete and 20 stickers to Lily. He then had 1/3 of his stickers left. How many stickers did he h
Oduvanchick [21]
Find a common denominator first.
P3/12. + 5/12
4/12 left

48 stickers
8 0
4 years ago
Matt says he can find the sum of 45+50 without rewriting it. Explain how you can solve this problem using mental math.
ryzh [129]
Thinking about combining 45 pennies and 50 pennies. How many pennies would you have in total? 95
6 0
3 years ago
Read 2 more answers
In which choice do all the points lie on the same line
Ronch [10]

Answer:

(0,0) (1,2) (2,4) (3,6)

Step-by-step explanation:

They all share the same slope which is 1/2

4 0
3 years ago
Read 2 more answers
The volume of a cone is 108 pi cubic inches. Its height is 4 inches. What is the radius of the cone? Round answer to nearest ten
leonid [27]

\bf \textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}~~ \begin{cases} r=radius\\ h=height\\ -----\\ V=108\pi \\ h=4 \end{cases}\implies 108\pi =\cfrac{\pi r^2(4)}{3}\implies 324\pi =4\pi r^2 \\\\\\ \cfrac{324\pi }{4\pi }=r^2\implies 81=r^2\implies \sqrt{81}=r\implies 9=r

7 0
3 years ago
Read 2 more answers
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
3 years ago
Read 2 more answers
Other questions:
  • 585=5x^3<br> solve for x
    5·1 answer
  • What is this question 4/9(1/5x+5/6)=
    14·1 answer
  • Vlad tried to solve an equation step by step.
    14·2 answers
  • Simplify 15.6 divided by negative 3.
    9·2 answers
  • Which statements comparing the function are true?select three options.​
    13·1 answer
  • What is this I need it it’s the last question!!!!!
    5·2 answers
  • <img src="https://tex.z-dn.net/?f=%20-%206x%20%2B%205%20%5Cgeqslant%2011" id="TexFormula1" title=" - 6x + 5 \geqslant 11" alt="
    15·1 answer
  • (GIVING BRAINLIEST!!!)
    11·1 answer
  • Find the slope of the line
    9·1 answer
  • Use the figure to find the specified angle measure. In the figure, II q
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!