Answer:
Do you have any key words from the unit?
Step-by-step explanation:
Answer:

Step-by-step explanation:
Hi there!

Open up the parentheses

Combine like terms

I hope this helps!
indica que as duas variáveis movem-se em direções opostas, e que a relação também fica mais forte quanto mais próxima de menos 1 a correlção ficar. Duas variáveis que estão perfeitamente correlacionadas positivamente (r=1) movem-se essencialmente em perfeita proporção na mesma direção, enquanto dois conjuntos que estão perfeitamente correlacionados negativamente movem-se em perfeita proporção em direções opostas.
First plot the points. Let’s just use the first graph. When you have done that. Draw a triangle. Find the right angle and look at what line is across from that. That is the hypotenuse. That is the length that you are trying to find. So you have to do your equation: a^2 + b^2 = c^2. A and B have to be the length of the other 2 lines(just count it). When you have done that repack you a and b with your #s. And what ever is equal to you c. Then that is you answer. (Im sorry if this was confusing)
The nth taylor polynomial for the given function is
P₄(x) = ln5 + 1/5 (x-5) - 1/25*2! (x-5)² + 2/125*3! (x-5)³ - 6/625*4! (x - 5)⁴
Given:
f(x) = ln(x)
n = 4
c = 3
nth Taylor polynomial for the function, centered at c
The Taylor series for f(x) = ln x centered at 5 is:

Since, c = 5 so,

Now
f(5) = ln 5
f'(x) = 1/x ⇒ f'(5) = 1/5
f''(x) = -1/x² ⇒ f''(5) = -1/5² = -1/25
f'''(x) = 2/x³ ⇒ f'''(5) = 2/5³ = 2/125
f''''(x) = -6/x⁴ ⇒ f (5) = -6/5⁴ = -6/625
So Taylor polynomial for n = 4 is:
P₄(x) = ln5 + 1/5 (x-5) - 1/25*2! (x-5)² + 2/125*3! (x-5)³ - 6/625*4! (x - 5)⁴
Hence,
The nth taylor polynomial for the given function is
P₄(x) = ln5 + 1/5 (x-5) - 1/25*2! (x-5)² + 2/125*3! (x-5)³ - 6/625*4! (x - 5)⁴
Find out more information about nth taylor polynomial here
brainly.com/question/28196765
#SPJ4