1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aniked [119]
3 years ago
11

PLEASE HELP. WILL GIVE BRAINLIEST

Mathematics
2 answers:
shusha [124]3 years ago
6 0
∠M corresponds to ∠B, so we have ...
  m∠C = 3(m∠B)

Then the sum of angles of the triangle is
  m∠A + m∠B + m∠C = 180°
  60 + B + 3B = 180 . . . . . . . . . use B to mean m∠B
  4B = 120
  B = 120/4 = 30

m∠M = m∠B = 30°
pav-90 [236]3 years ago
4 0
Triangle ABC is similar to triangle LMN
m<A = m<L = 60
m<C = m<N
m<B = m<M

Lets x = m<M
so 
m<C = m<N = 3x

and sum of interior angles of a triangle = 180
so
m<L + m<N + m<M = 180
60 + 3x + x + 180
4x + 60 = 180
4x = 120
  x = 30

m<M =  x = 30 

answer
m<M = 30°


You might be interested in
QUICK PLEASE HELP ME!!!!!
11111nata11111 [884]

Answer:

E

Step-by-step explanation:

Hopefully this isn't too late. My work is attached below.

8 0
3 years ago
DNA molecules consist of chemically linked sequences of the bases adenine, guanine, cytosine and thymine, denoted A, G, C and T.
Dmitry [639]

Answer:

1. See the attached tree diagram (64 different sequences); 2. 64 codons; 3. 8 codons; 4. 24 codons consist of three different bases.

Step-by-step explanation:

The main thing to solve this kind of problem, it is to know if the pool of elements admits <em>repetition</em> and if the <em>order matters</em> in the sequences or collections of objects that we can form.

In this problem, we have the bases of the DNA molecule, namely, adenine (A), thymine (T), guanine (G) and cytosine (C) and they may appear in a sequence of three bases (codon) more than once. In other words, <em>repetition is allowed</em>.

We can also notice that <em>order matters</em> in this problem since the position of the base in the sequence makes a difference in it, i.e. a codon (ATA) is different from codon (TAA) or (AAT).

Then, we are in front of sequences that admit repetitions and the order they may appear makes a difference on them, and the formula for this is as follows:

\\ Sequences\;with\;repetition = n^{k} (1)

They are sequences of <em>k</em> objects from a pool of <em>n</em> objects where the order they may appear matters and can appeared more than once (repetition allowed).

<h3>1 and 2. Possible base sequences using tree diagram and number of possible codons</h3>

Having all the previous information, we can solve this question as follows:

All possible base sequences are represented in the first graph below (left graph) and are 64 since <em>n</em> = 4 and <em>k</em> = 3.

\\ Sequences\;with\;repetition = 4^{3} = 4*4*4 = 64

Looking at the graph there are 4 bases * 4 bases * 4 bases and they form 64 possible sequences of three bases or codons. So <em>there are 64 different codons</em>. Graphically, AAA is the first case, then AAT, the second case, and so on until complete all possible sequences. The second graph shows another method using a kind of matrices with the same results.

<h3>3. Cases for codons whose first and third bases are purines and whose second base is a pyrimidine</h3>

In this case, we also have sequences with <em>repetitions</em> and the <em>order matters</em>.

So we can use the same formula (1) as before, taking into account that we need to form sequences of one object for each place (we admit only a Purine) from a pool of two objects (we have two Purines: A and G) for the <em>first place</em> of the codon. The <em>third place</em> of the codon follows the same rules to be formed.

For the <em>second place</em> of the codon, we have a similar case: we have two Pyrimidines (C and T) and we need to form sequences of one object for this second place in the codon.

Thus, mathematically:

\\ Sequences\;purine\;pyrimidine\;purine = n^{k}*n^{k}*n^{k} = 2^{1}*2^{1}*2^{1} = 8

All these sequences can be seen in the first graph (left graph) representing dots. They are:

\\ \{ATA, ATG, ACA, ACG, GTA, GTG, GCA, GCG\}

The second graph also shows these sequences (right graph).

<h3>4. Possible codons that consist of three different bases</h3>

In this case, we have different conditions: still, order matters but no repetition is allowed since the codons must consist of three different bases.

This is a case of <em>permutation</em>, and the formula for this is as follows:

\\ nP_{k} = \frac{n!}{n-k}! (2)

Where n! is the symbol for factorial of number <em>n</em>.

In words, we need to form different sequences (order matters with no repetition) of three objects (a codon) (k = 3) from a pool of four objects (n = 4) (four bases: A, T, G, and C).

Then, the possible number of codons that consist of three different bases--using formula (2)--is:

\\ 4P_{3} = \frac{4!}{4-3}! = \frac{4!}{1!} = \frac{4!}{1} = 4! = 4*3*2*1 = 24

Thus, there are <em>24 possible cases for codons that consist of three different bases</em> and are graphically displayed in both graphs (as an asterisk symbol for left graph and closed in circles in right graph).

These sequences are:

{ATG, ATC, AGT, AGC, ACT, ACG, TAG, TAC, TGA, TGC, TCA, TCG, GAT, GAC, GTA, GTC, GCA, GCT, CAT, CAG, CTA, CTG, CGA, CGT}

<h3 />

6 0
3 years ago
Evaluate the limit
wel

We are given with a limit and we need to find it's value so let's start !!!!

{\quad \qquad \blacktriangleright \blacktriangleright \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

But , before starting , let's recall an identity which is the <em>main key</em> to answer this question

  • {\boxed{\bf{a^{2}-b^{2}=(a+b)(a-b)}}}

Consider The limit ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}\times \dfrac{\sqrt{x}+\sqrt{3\sqrt{x}-2}}{\sqrt{x}+\sqrt{3\sqrt{x}-2}}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-\sqrt{3\sqrt{x}-2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}{(x^{2}-4^{2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Using the above algebraic identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x})^{2}-(\sqrt{3\sqrt{x}-2})^{2}}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-(3\sqrt{x}-2)}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}+2}{\{(\sqrt{x})^{2}-2^{2}\}(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2+4-4}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(x-4)+2+4-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , using the same above identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+6-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+3(2-\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)-3(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take<em> (√x-2) common</em> in numerator ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)\{(\sqrt{x}+2)-3\}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\cancel{(\sqrt{x}-2)}\{(\sqrt{x}+2)-3\}}{\cancel{(\sqrt{x}-2)}(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}+2-3)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-1)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , <em>putting the limit ;</em>

{:\implies \quad \sf \dfrac{\sqrt{4}-1}{(\sqrt{4}+2)(4+4)(\sqrt{4}+\sqrt{3\sqrt{4}-2})}}

{:\implies \quad \sf \dfrac{2-1}{(2+2)(4+4)(2+\sqrt{3\times 2-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{6-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{4})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+2)}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(4)}}

{:\implies \quad \sf \dfrac{1}{128}}

{:\implies \quad \bf \therefore \underline{\underline{\displaystyle \bf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}=\dfrac{1}{128}}}}

3 0
2 years ago
Read 2 more answers
What is the solution of the system?
Kryger [21]
Greetings!

Solve the System, using Elimination:
\left \{ {{4x+2y=18} \atop {2x+3y=15}} \right.

Multiply Equation #2 by 2:
\left \{ {{4x+2y=18} \atop {2(2x+3y)=2(15)}} \right.

\left \{ {{4x+2y=18} \atop {4x+6y=30}} \right.

Eliminate variable x:
-\frac{ \left \{ {{4x+2y=18} \atop {4x+6y=30}} \right.}{0x-4y=-12}

4y=-12

Divide both sides by 4:
\frac{4y}{4}= \frac{12}{4}

y=3

Input this value into one of the Equations: 
4x+2y=18

4x+2(3)=18

Simplify:
4x+6=18

(4x+6)+(-6)=(18)+(-6)

4x=12

Divide both sides by 4.
\frac{4x}{4}= \frac{12}{4}

x=3

The Solution to this System (The Point of Intersection):
\boxed{(3,3)}

I hope this helped!
-Benjamin
7 0
3 years ago
Milanputs 1 4 ŽĨŚĞƌůĂǁŶͲŵŽǁŝŶŐŵŽŶĞLJŝŶƐĂǀŝŶŐƐĂŶĚƵƐĞƐ 1 2of the remaining money to pay back her sister. If she has $15 left, how
kirill115 [55]
The same is 14 maybe you could try it
7 0
3 years ago
Other questions:
  • Find are of rhombus with the height of 14 and perimeter of 25
    7·1 answer
  • How do I solve the product of 8 and 54?
    13·1 answer
  • In the figure, ABC is mapped onto XYZ by a 180° rotation. Angle B corresponds to which angle in XYZ?
    8·1 answer
  • A coin was flipped 150 times. The results of the experiment are shown in the following table:
    12·2 answers
  • Find an equation parallel to x equals negative 5 and passing through left parenthesis 6 comma negative 2 right parenthesis .
    6·1 answer
  • WHERE ARE THE EXPERTS AND ACE!!!!!!! I NEED HELP PLS SHARE YO SMARTNESS!!!!! WILL GIVE BRAINLIEST AND RATE AND VOTE!!!
    10·1 answer
  • What is the remainder of 715 divided by 9
    14·2 answers
  • I don't quite understand this one!
    10·2 answers
  • What is the value of x in this triangle?<br> Round only your final answer to the nearest hundredth.
    8·1 answer
  • X
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!