What are the statements for the koala
Answer:
The question lacks options, the options are:
parents?
A.100% red/white-feather chickens.
B.50% white-feather chickens and 50% red/white-feather chickens.
C.33% white-feather chickens, 33% red-feather chickens, and 33% red/white-feather chickens.
D.25% white-feather chickens, 25% red-feather chickens, and 50% red/white-feather chickens
The Correct answer is D
Explanation:
According to the question, the hybrid chicken has a mixture of red and white feather phenotypes expressed at the same time. This tells us that the red and white alleles are CODOMINANT in the chicken i.e. none is dominant or recessive over the other.
Let's assume that (R) allele is the red feather colour while (r) allele is for white feather colour. Therefore, the red/white feathered chicken will have a Rr genotype. In a cross between two red/white feathered chicken (Rr), the following offsprings will be produced RR, Rr, Rr and rr
RR- Homozygous red feather d chicken (1/4 × 100=25%)
Rr- Hybrid Red/White feathered chicken (2/4 × 100=50%)
rr- Homozygous white feathered chicken (1/4 × 100=25%)
Answer: b
Explanation:
An open system is when nutrients and waste are moved through the body freely through the body cavity, rather than being enclosed in veins.
Answer:
Nerve cells release chemical signals into synapses between them (short distance). They also transverse their lengths with an electrical signal that can result in signal travel along a series of cells (long distance).
Explanation:
Nerve cells release neurotransmitters in the synaptic cleft which are capable of affecting nearby cells such as other nerve cells and muscle cells. Neurotransmitter molecules include, among others, serotonin, acetylcholine, dopamine, norepinephrine and histamine. Moreover, the synaptic cleft is the space that separates a neuron cell and its target cell. On the other hand, neurons transmit signals through electrical impulses. Electrical impulses travel long distances in the body carried by axons of the nerves. Thus, nerve impulses connect the brain and spinal cord and they carry signals to different parts of the body.