Answer:
was introduced during the Renaissance
Explanation:
Answer:
Explanation:
From the information given:
The cell potential on mars E = + 100 mV
By using Goldman's equation:
![E_m = \dfrac{RT}{zF}In \Big (\dfrac{P_K[K^+]_{out}+P_{Na}[Na^+]_{out}+P_{Cl}[Cl^-]_{out} }{P_K[K^+]_{in}+P_{Na}[Na^+]_{in}+ P_{Cl}[Cl^-]_{in}} \Big )](https://tex.z-dn.net/?f=E_m%20%3D%20%5Cdfrac%7BRT%7D%7BzF%7DIn%20%5CBig%20%28%5Cdfrac%7BP_K%5BK%5E%2B%5D_%7Bout%7D%2BP_%7BNa%7D%5BNa%5E%2B%5D_%7Bout%7D%2BP_%7BCl%7D%5BCl%5E-%5D_%7Bout%7D%20%7D%7BP_K%5BK%5E%2B%5D_%7Bin%7D%2BP_%7BNa%7D%5BNa%5E%2B%5D_%7Bin%7D%2B%20P_%7BCl%7D%5BCl%5E-%5D_%7Bin%7D%7D%20%20%20%20%20%20%5CBig%20%29)
Let's take a look at the impermeable cell with respect to two species;
and the two species be Na⁺ and Cl⁻
![E_m = \dfrac{RT}{zF} In \dfrac{[K^+]_{out}}{[K^+]_{in}}](https://tex.z-dn.net/?f=E_m%20%3D%20%5Cdfrac%7BRT%7D%7BzF%7D%20In%20%5Cdfrac%7B%5BK%5E%2B%5D_%7Bout%7D%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D)
where;
z = ionic charge on the species = + 1
F = faraday constant
∴
![100 \times 10^{-3} = \Big (\dfrac{8.314 \times 298}{1\times 96485} \Big) \mathtt{In} \Big ( \dfrac{4}{[K^+]_{in}} \Big)](https://tex.z-dn.net/?f=100%20%5Ctimes%2010%5E%7B-3%7D%20%3D%20%5CBig%20%28%5Cdfrac%7B8.314%20%5Ctimes%20298%7D%7B1%5Ctimes%2096485%7D%20%5CBig%29%20%5Cmathtt%7BIn%7D%20%20%5CBig%20%28%20%5Cdfrac%7B4%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![100 \times 10^{-3} = 0.0257 \Big ( \dfrac{4}{[K^+]_{in}} \Big)](https://tex.z-dn.net/?f=100%20%5Ctimes%2010%5E%7B-3%7D%20%3D%200.0257%20%5CBig%20%28%20%5Cdfrac%7B4%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![3.981= \mathtt{In} \Big ( \dfrac{4}{[K^+]_{in}} \Big)](https://tex.z-dn.net/?f=3.981%3D%20%5Cmathtt%7BIn%7D%20%5CBig%20%28%20%5Cdfrac%7B4%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![exp ( 3.981) = \dfrac{4}{[K^+]_{in}} \\ \\ 53.57 = \dfrac{4}{[K^+]_{in}}](https://tex.z-dn.net/?f=exp%20%28%203.981%29%20%3D%20%5Cdfrac%7B4%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D%20%5C%5C%20%5C%5C%20%2053.57%20%3D%20%5Cdfrac%7B4%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D)
![[K^+]_{in} = \dfrac{4}{53.57}](https://tex.z-dn.net/?f=%5BK%5E%2B%5D_%7Bin%7D%20%3D%20%5Cdfrac%7B4%7D%7B53.57%7D)
![[K^+]_{in} = 0.0476](https://tex.z-dn.net/?f=%5BK%5E%2B%5D_%7Bin%7D%20%20%3D%200.0476)
For [Cl⁻]:
![100 \times 10^{-3} = -0.0257 \ \mathtt{In} \Big ( \dfrac{120}{[Cl^-]_{in}} \Big)](https://tex.z-dn.net/?f=100%20%5Ctimes%2010%5E%7B-3%7D%20%3D%20-0.0257%20%5C%20%20%5Cmathtt%7BIn%7D%20%5CBig%20%28%20%5Cdfrac%7B120%7D%7B%5BCl%5E-%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![-3.981 = \ \mathtt{In} \Big ( \dfrac{120}{[Cl^-]_{in}} \Big)](https://tex.z-dn.net/?f=-3.981%20%3D%20%20%5C%20%20%5Cmathtt%7BIn%7D%20%5CBig%20%28%20%5Cdfrac%7B120%7D%7B%5BCl%5E-%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![0.01867 = \dfrac{120}{[Cl^-]_{in}}](https://tex.z-dn.net/?f=0.01867%20%3D%20%20%5Cdfrac%7B120%7D%7B%5BCl%5E-%5D_%7Bin%7D%7D)
![[Cl^-]_{in} = \dfrac{120}{0.01867}](https://tex.z-dn.net/?f=%5BCl%5E-%5D_%7Bin%7D%20%3D%20%5Cdfrac%7B120%7D%7B0.01867%7D)
![[Cl^-]_{in} =6427.4](https://tex.z-dn.net/?f=%5BCl%5E-%5D_%7Bin%7D%20%3D6427.4)
For [Na⁺]:
![100 \times 10^{-3} = 0.0257 \Big ( \dfrac{145}{[Na^+]_{in}} \Big)](https://tex.z-dn.net/?f=100%20%5Ctimes%2010%5E%7B-3%7D%20%3D%200.0257%20%5CBig%20%28%20%5Cdfrac%7B145%7D%7B%5BNa%5E%2B%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![53.57= \Big ( \dfrac{145}{[Na^+]_{in}} \Big)](https://tex.z-dn.net/?f=53.57%3D%20%5CBig%20%28%20%5Cdfrac%7B145%7D%7B%5BNa%5E%2B%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![[Na^+]_{in}= 2.70](https://tex.z-dn.net/?f=%5BNa%5E%2B%5D_%7Bin%7D%3D%202.70)
Answer:
a. Let us consider that L is responsible for late and l is responsible for early. From the mentioned data, it can be concluded that allele L or late is dominant over early. By crossing plants 1 and 4 we get the expected ratio of 3: 1, which shows that it follows Mendel's law of dominant.
b. The genotype of all the four plants are:
1st plant = Ll
2nd plant = ll
3rd plant = LL
4th plant = Ll
c. If the plant 1 is self-fertilized then the expected progeny will be 3 (late): 1 (early).
In case if the 2nd plant is self-fertilized, the expected progeny will be only early.
In case if the 3rd plant is self-fertilized, the expected progeny will be only late.
In case if the 4th plant is self-fertilized, the expected progeny will be 3 (late): 1 (early).
Glutamine and glutamate are the primary nitrogen donors for biosynthetic reactions in the cell. Glutamine is an α-amino acid that is used in the biosynthesis of proteins. Its side chain is similar to that of glutamic acid, except the carboxylic acid group is replaced by an amide. It is classified as a charge-neutral, polar amino acid. It is non-essential and conditionally essential in humans, meaning the body can usually synthesize sufficient amounts of it, but in some instances of stress, the body's demand for glutamine increases, and glutamine must be obtained from the diet. Glutamate is generally acknowledged to be the most important transmitter for normal brain function. Nearly all excitatory neurons in the central nervous system<span> are glutamatergic, and it is estimated that over half of all brain synapses release this agent. Glutamate plays an especially important role in clinical neurology because elevated concentrations of extracellular glutamate, released as a result of neural injury, are toxic to neurons</span>
They are called paleontologists.