1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UkoKoshka [18]
3 years ago
14

The downsprue leading into the runner of a certain mold has a length of 175 mm. The cross-sectional area at the base of the spru

e is 400 mm2 . The mold cavity has a volume of 0.001 m3 . Determine (a) the velocity of the molten metal flowing through the base of the downsprue, (b) the volume rate of flow, and (c) the time required to fill the mold cavity.
Physics
1 answer:
adoni [48]3 years ago
5 0

Answer:

(a) Velocity at bottom is 1.85 m/s

(b) Volume flow rate is 7.4 x 10⁻⁴ m³/s.

(c) The time required to fill the mold is 1.35 s.

Explanation:

(a)

Applying Bernoulli's Equation on both ends of the down sprue, with the assumptions that every point is at atmospheric pressure and the liquid metal at the pouring basin is at zero velocity. The equation then becomes:

V = √2gh

where,

V = velocity at bottom of down sprue

h = height of down sprue = 175 mm = 0.175 m

V = √2(9.8 m/s²)(0.175 m)

<u>V = 1.85 m/s</u>

<u></u>

(b)

The volume flow rate is given as:

Volume Flow Rate = (V)(A)

where,

V = velocity at bottom = 1.85 m/s

A = Area of bottom = 400 mm² = 0.0004 m²

Therefore,

Volume Flow Rate = (1.85 m/s)(0.0004 m²)

<u>Volume Flow Rate = 7.4 x 10⁻⁴ m³/s = 740 cm³/s</u>

(c)

The time required to fill the cavity is given as:

Volume Flow Rate = V/t

where,

V = Volume of mold Cavity = 0.001 m³

t = time required to fill the cavity = ?

Therefore,

t = V/Volume Flow Rate

t = 0.001 m³/7.4 x 10⁻⁴ m³/s

<u>t = 1.35 s</u>

<u></u>

You might be interested in
Three forces that act on a roller coaster:
Andre45 [30]
Yes, all of these could be applied to a roller coaster.
6 0
2 years ago
Read 2 more answers
In a semiclassical model of the hydrogen atom, the electron orbits the proton at a distance of 0.053 nm. Part A What is the elec
Bezzdna [24]

Answer with Explanation:

We are given that

r=0.053 nm=0.053\times 10^{-9} m

1 nm=10^{-9} m

Charge on proton,q=1.6\times 10^{-19} C

a.We have to find the electric  potential of the proton at the position of the electron.

We know that the electric potential

V=\frac{kq}{r}

Where k=9\times 10^9

V=\frac{9\times 10^9\times 1.6\times 10^{-19}}{0.053\times 10^{-9}}

V=27.17 V

B.Potential energy of electron,U=\frac{kq_e q_p}{r}

Where

q_e=-1.6\times 10^{-19} c=Charge on electron

q_p=q=1.6\times 10^{-19} C=Charge on proton

Using the formula

U=\frac{9\times 10^9\times (-1.6\times 10^{-19}\times 1.6\times 10^{-19}}{0.053\times 10^{-9}}

U=-4.35\times 10^{-18} J

8 0
3 years ago
Two charged objects have a repulsive force of 0.040 N. If the distance separating the objects is doubled, then what is the new f
Georgia [21]

Answer:

Two charged objects have a repulsive force of 0.080 N. If the charge of both of the objects is doubled, then what is the new force? Explanation: Electrostatic force is directly related to the charge of each object. So if the charge of both objects is doubled, then the force will become four times greater.

Explanation:

hope this helps

7 0
2 years ago
A sample of a gas has a volume of 639 cm3 when the pressure is 75.9 kPa. What is the volume of the gas when the pressure is incr
const2013 [10]

Answer:

388 cm^3

Explanation:

For this problem, we can use Boyle's law, which states that for a gas at constant temperature, the product between pressure and volume remains constant:

pV=const.

which can also be rewritten as

p_1 V_1 = p_2 V_2

In our case, we have:

p_1 = 75.9 kPa is the initial pressure

V_1 = 639 cm^3 is the initial volume

p_2 = 125 kPa is the final pressure

Solving for V2, we find the final volume:

v_2 = \frac{p_1 V_1}{p_2}=\frac{(75.9)(639)}{125}=388 cm^3

7 0
3 years ago
The weight of a block on the inclined plane is 500 N and the angle of incline is 30 degrees. What is the magnitude of the force
yanalaym [24]

Answer:

250 N

433 N

Explanation:

N = Normal force by the surface of the inclined plane

W = Weight of the block = 500 N

f = static frictional force acting on the block

Parallel to incline, force equation is given as

f = W Sin30

f = (500) Sin30

f = 250 N

Perpendicular to incline force equation is given  

N = W Cos30

N = (500) Cos30

N = 433 N

3 0
2 years ago
Other questions:
  • A jetliner, traveling northward, is landing with a speed of 69 m/s. Once the jet touches down, it has 750 m of runway in which t
    12·1 answer
  • The circuit below shows some of the circuitry in a small toy robot. When the circuit is on the robot moves its arms, the motor,
    13·1 answer
  • Different colors of light correspond to different light
    5·1 answer
  • Jake has a car that accelerates at 10 m/s2. If the car has a mass of 1000 kg, how much force does the car produce?
    11·2 answers
  • A distressed car is rolling backward, downhill at 3.0 m/s when its driver finally manages to
    14·1 answer
  • The graph shows the heating curve of water the X axis shows heat added overtime and Y axis shows the temperature identify the re
    15·1 answer
  • A 5kg object is moving downward at a speed of 12m/s. If it is currently 2.6m above the ground, what is its potential energy? Use
    9·1 answer
  • If two objects have different tempters, in which direction will heat move? for how long
    7·1 answer
  • A charge of 1. 5 µC is placed on the plates of a parallel plate capacitor. The change in voltage across the plates is 36 V. How
    5·1 answer
  • Do you know what NBA basketball player is this. And what is he doing to stay healthy.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!