Answer:
The force required is equal to
.
Explanation:
We know that
Torque = force × perpendicular distance
= F × R = I×
I = M×
From above equation
.............. 1
We know that
...........................2
Given that t= 2 sec


From equation 1 and 2 , we get
F =
= 
Upon substituting the above values we will be getting
F = 
<em>friction transforms KE into thermal energy (a)</em>
That's why, if it goes on long enough, the moving object actually gets warm.
Answer:
E1 = 2996.667N/C E2 = 11237.5N/C
Explanation:
E1 = kQ1/r^2
=8.99 x 10^9 x 30 x 10^-9/(30x10^-2)^2
= 2996.667N/C
E2 = kQ2/r^2
= 8.99 x 10^9 x 50 x 10^-9/(20x10^-2)^2
= 11237.5N/C
The direction are towards the point a
Answer: 6067.5 N
Explanation:
Work = Change in Energy. To start, all of the energy is kinetic energy, so find the total KE using: KE = 1/2(m)(v^2). Plug in 1980 kg for m and 15.5 m/s for v and get KE = 237847.5 J.
Now, plug this in for work: Work = Force * Distance; so, divide work by distance to get 6067.5 N.
Answer:
3.25 × 10^7 m/s
Explanation:
Assuming the electrons start from rest, their final kinetic energy is equal to the electric potential energy lost while moving through the potential difference (ΔV)
Ek = 1/2 mv2 = qΔV .................. 1
Given that V is the electron speed in m/s
Charge of electron = 1.60217662 × 10-19 coulombs
Mass of electron = 9.109×10−31 kilograms
ΔV = 3.0kV = 3000V
Make V the subject of the formula in eqaution 1
V = sqr root 2qΔV/m
V = 2 × 1.60217662 × 10-19 × 3000 / 9.109×10−31
V = 3.25 × 10^7 m/s