Answer:
c = 
f= 1500
Step-by-step explanation:
Tenemos la siguiente ecuación
Tenemos los siguientes valores para m=15000, c = 3000 y para m = 20000, c=3500. Es decir, tenemos las siguientes ecuaciones

Si restamos la segunda ecuación de la primera, tenemos que

Luego

Entonces 
Si tomamos la primera ecuación, tenemos que
. Es decir,

Esta solución, al plantear 2 ecuaciones y dos incógnitas, plantea un sistema dos por dos.
There are 120 ways in which 5 riders and 5 horses can be arranged.
We have,
5 riders and 5 horses,
Now,
We know that,
Now,
Using the arrangement formula of Permutation,
i.e.
The total number of ways
,
So,
For n = 5,
And,
r = 5
As we have,
n = r,
So,
Now,
Using the above-mentioned formula of arrangement,
i.e.
The total number of ways
,
Now,
Substituting values,
We get,

We get,
The total number of ways of arrangement = 5! = 5 × 4 × 3 × 2 × 1 = 120,
So,
There are 120 ways to arrange horses for riders.
Hence we can say that there are 120 ways in which 5 riders and 5 horses can be arranged.
Learn more about arrangements here
brainly.com/question/15032503
#SPJ4
Answer:
6 hours
Step-by-step explanation:
What you have to do is find the unit rate, which would be 20/40 which is .5 ( half an hour, 30 mins ) . Then you would do 30 x 12 = 360 ( 6 hours ).
Step-by-step explanation:
I apologise for the quality.
Slope of parallel line to this would be -1/3x