Check the forward differences of the sequence.
If
, then let
be the sequence of first-order differences of
. That is, for n ≥ 1,

so that
.
Let
be the sequence of differences of
,

and we see that this is a constant sequence,
. In other words,
is an arithmetic sequence with common difference between terms of 2. That is,

and we can solve for
in terms of
:



and so on down to

We solve for
in the same way.

Then



and so on down to


Answer:
Re = 6.2
Im = 37
Step-by-step explanation:
Re is the Real Axis which is the real number in the equation (6.2).
Im is the Imaginary Axis which is the imaginary number in the equation (37)
Answer:
(- 4, - 12 ) , (4, 12 )
Step-by-step explanation:
Given the 2 equations
y = 3x → (1)
y = x² + 3x - 16 → (2)
Substitute y = x² + 3x - 16 into (1)
x² + 3x - 16 = 3x ( subtract 3x from both sides )
x² - 16 = 0 ( add 16 to both sides )
x² = 16 ( take the square root of both sides )
x = ±
= ± 4
Substitute these values into (1) for corresponding values of y
x = - 4 : y = 3 × - 4 = - 12 ⇒ (- 4, - 12 )
x = 4 : y = 3 × 4 = 12 ⇒ (4, 12 )
In any linear equation the coefficient of the x-term represents ALWAYS the slope.
So it is B. The slope of the line
Answer:
-1.25737973739
Step-by-step explanation:
plz make it brillent ans