Answer: 90% confidence interval is; ( - 0.0516, 0.3752 )
Step-by-step explanation:
Given the data in the question;
n1 = 72, n2 = 17
P1 = 54 / 72 = 0.75
P2 = 10 / 17 = 0.5882
so
P_good = 0.75
P_bad = 0.5882
standard ERRROR will be;
SE = √[(0.75×(1-0.75)/72) + (0.5882×(1-0.5882)/17)]
SE = √( 0.002604 + 0.01424)
SE = 0.12978
given confidence interval = 90%
significance level a = (1 - 90/100) = 0.1, |Z( 0.1/2=0.05)| = 1.645 { from standard normal table}
so
93% CI is;
(0.75 - 0.5882) - 1.645×0.12978 <P_good - P_bad< (0.75 - 0.5882) + 1.645×0.12978
⇒0.1618 - 0.2134 <P_good - P_bad< 0.1618 + 0.2134
⇒ - 0.0516 <P_good - P_bad< 0.3752
Therefore 90% confidence interval is; ( - 0.0516, 0.3752 )
Y - 3 = -2(x+5)
y - 3 = -2x - 10
+3. +3
y = -2x - 7
Answer:
missing side = 4.7 mm
Step-by-step explanation:
using the Pythagorean theorem:
7² - 5.2² = x²
49 -27.04 = x²
x² = 21.96
x = 4.69
X = longest side , y = middle side , z = shortest side
P = x + y + z
P = 82
x = 2z + 7
y = z + 15
82 = (2z + 7) + (z + 15) + z...combine like terms
82 = 4z + 22
82 - 22 = 4z
60 = 4z
60/4 = z
15 = z
so the shortest side (z) is 15 cm
the second side (y) is : z + 15......15 + 15 = 30 cm
and the longest side (x) is : 2z + 7.....2(15) + 7 = 37 cm
So for this problem we have to create a common denominator by multiplying 3-x to all of the expressions. So we have 2(3-x)/(3-x)-x(3-x)/(3-x)-1/(3-x) and then we simplify to get (x^2-5x+5)/(3-x) so C.