Answer:
value of a.b = -4
Step-by-step explanation:
We need to find a.b
a= 4i-4j
b = 4i+5j
We know that i.i =1, j.j=1, i.j =0 and j.i=0
a.b = (4i-4j).(4i+5j)
a.b = 4i(4i+5j)-4j(4i+5j)
a.b = 16i.i +20i.j-16j.i-20j.j
a.b = 16(1) +20(0)-16(0)-20(1)
a.b = 16 +0-0-20
a.b = 16-20
a.b =-4
So, value of a.b = -4
Answer:
• David
,
• 4 miles
Explanation:
In the graph:
The given locations are:
• Owen's House, A(11,3)
,
• David's House, B(15,13)
,
• School, C(3,18)
We determine both Owen's and David's distance from the school using the distance formula.

Owen's distance from school (AC)
![\begin{gathered} AC=\sqrt[]{(3-11)^2+(18-3)^2} \\ =\sqrt[]{(-8)^2+(15)^2} \\ =\sqrt[]{64+225} \\ =\sqrt[]{289} \\ AC=17\text{ miles} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20AC%3D%5Csqrt%5B%5D%7B%283-11%29%5E2%2B%2818-3%29%5E2%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B%28-8%29%5E2%2B%2815%29%5E2%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B64%2B225%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B289%7D%20%5C%5C%20AC%3D17%5Ctext%7B%20miles%7D%20%5Cend%7Bgathered%7D)
David's distance from school (BC)
![\begin{gathered} BC=\sqrt[]{(3-15)^2+(18-13)^2} \\ =\sqrt[]{(-12)^2+(5)^2} \\ =\sqrt[]{144+25} \\ =\sqrt[]{169} \\ BC=13\text{ miles} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20BC%3D%5Csqrt%5B%5D%7B%283-15%29%5E2%2B%2818-13%29%5E2%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B%28-12%29%5E2%2B%285%29%5E2%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B144%2B25%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B169%7D%20%5C%5C%20BC%3D13%5Ctext%7B%20miles%7D%20%5Cend%7Bgathered%7D)
We see from the calculations that David lives closer to the school, and by 4 miles.
The graph below is attached for further understanding:
I think it would require 100 workers since 1 worker digs up 1 yard.
Hope this helps.
Supplementary means it adds up to 180 degrees.
So if one side is 31 degrees, you would need to subtract that from 180 to find the other side.
-----------------------
180 - 31 = 149
-----------------------
The other angle would be 149 degrees.
Answer:

Step-by-step explanation:
Given - The circumference of the ellipse approximated by
where 2a and 2b are the lengths of 2 the axes of the ellipse.
To find - Which equation is the result of solving the formula of the circumference for b ?
Solution -

Squaring Both sides, we get
![[\frac{C}{2\pi }]^{2} = [\sqrt{\frac{a^{2} + b^{2} }{2} }]^{2} \\\frac{C^{2} }{(2\pi)^{2} } = {\frac{a^{2} + b^{2} }{2} }\\2\frac{C^{2} }{4(\pi)^{2} } = {{a^{2} + b^{2} }](https://tex.z-dn.net/?f=%5B%5Cfrac%7BC%7D%7B2%5Cpi%20%7D%5D%5E%7B2%7D%20%20%20%3D%20%20%5B%5Csqrt%7B%5Cfrac%7Ba%5E%7B2%7D%20%2B%20b%5E%7B2%7D%20%7D%7B2%7D%20%7D%5D%5E%7B2%7D%20%5C%5C%5Cfrac%7BC%5E%7B2%7D%20%7D%7B%282%5Cpi%29%5E%7B2%7D%20%20%7D%20%20%20%3D%20%20%7B%5Cfrac%7Ba%5E%7B2%7D%20%2B%20b%5E%7B2%7D%20%7D%7B2%7D%20%7D%5C%5C2%5Cfrac%7BC%5E%7B2%7D%20%7D%7B4%28%5Cpi%29%5E%7B2%7D%20%20%7D%20%20%20%3D%20%20%7B%7Ba%5E%7B2%7D%20%2B%20b%5E%7B2%7D%20%7D)

∴ we get
