Answer:
The age of the horse, in human years, when Alex was born can be determined by simply deducting the Current age of Alex from the Current age of the horse in human years.
Therefore, the age of the horse, in human years, when Alex was born was 42 years.
Step-by-step explanation:
Current age of Alex = 8
Current age of the horse in human years = 50
Since the age of the horse is already stated in human years, it implies there is no need to convert the age of the horse again.
Therefore, since Alex is a human who was born 8 years ago, the age of the horse, in human years, when Alex was born can be determined by simply deducting the Current age of Alex from the Current age of the horse in human years as follows:
The age of the horse, in human years, when Alex was born = 50 - 8 = 42
Therefore, the age of the horse, in human years, when Alex was born was 42 years.
This can be presented in a table as follows:
Age of Alex Age of the Horse (in human years)
Eight years ago 0 42
Current age 8 50
Hmm. Try counting the side of the shape and add the sides. Using the sides as numbers you may be able to solve the problem.
T=6x is the answer. For equations you always start with y which in this case is t, then 6 for miles per hour and then x
Answer:
the 3rd one
Step-by-step explanation:
no problemo
Answer:
And the best way to solve this problem is using the normal standard distribution and the z score given by:
If we apply this formula to our probability we got this:
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Let X the random variable that represent the weights of a population, and for this case we know the distribution for X is given by:
Where
and
We are interested on this probability
And the best way to solve this problem is using the normal standard distribution and the z score given by:
If we apply this formula to our probability we got this: