The three cellular components, which takes part in the process of metabolism and are affected by the modifications in temperature are ribosomes, cell membrane, and enzymes.
All these are formed of a certain type of protein, which can become denatured when exposed to high enough heat or stop gets functioning at too low temperature. The high temperature can disrupt the non-polar hydrophobic interactions and hydrogen bonds. This takes place as heat enhances the kinetic energy and makes the molecules to throb so briskly and viciously that the bonds get disordered.
Answer:
Animals breathe the carbon dioxide released by plants after photosynthesis. And animals use the plants’ chlorophyll to make their own food.
Explanation:
Urbanization is the term that describes the Richardson family, who was tired of the congestion and crime associated with urban life, and then moved from their townhouse located in the middle of the city<span>to the suburbs</span>
Answer:
Cancer cells achieve proliferative immortality by activating or upregulating the normally silent human TERT gene (hTERT) that encodes telomerase, a protein with reverse transcriptase activity that complexes with other proteins and a functional RNA (encoded by hTR, also called hTERC) to make a ribonucleoprotein enzyme.
Explanation:
A rare cell that escapes crisis almost universally does so by reactivating telomerase and this cell can now become a cancer cell with limitless potential to divide. Almost all cancer cells have short telomeres and thus inhibitors of telomerase should drive such cancer cells into apoptotic cell death. Yet, each time a cell divides, the telomeres get shorter. When they get too short, the cell no longer can divide and becomes inactive or "senescent" or dies. This process is associated with aging, cancer, and a higher risk of death.
∠(-ω-)√
Answer:
The structure of their noses.
Explanation:
Catarrhines are distinguished from platyrrhines by several traits but the main distinctive feature between them, is the structure of their noses. This forms the basis of their names.
Platyrrhines are characterized by laterally-placed, rounded nostrils or flat-nosed while catarrhines have narrow, downward-facing nostrils or hooked-nosed.
Another distinguishing feature include their dental formulation which is 2.1.2.3 in catarrhines and 2.1.3.3 in platyrrhines.
The skull structure of catarrhines have frontal bone which make contact with the sphenoid bone unlike the platyrrhines.
Generally, catarrhines are much bigger in size than platyrrhines.