Part A: Yes, the data represent a function. The definition of a function is a relation in which no value of x will have two different values of y.
(Every time you plug in 3 as x, you will always get 4 as y; it's ok if you plug in 3 and 5 as x and get the same y, you just can't get two different y's for one x; sorry, it is pretty confusing). None of the numbers in the table repeat, so we can safely say that the relation is a function.
Part B: All we have to do is plug in 11 for x in the function given to find the answer:

In the table, y = 8 when x = 11, but in the function given, y = 34 when x = 11, so the function given is greater.
Part C: To find the answer to C, just plug in 99 for f(x), as it tells you to do:
Answer:
The probability that the child must wait between 6 and 9 minutes on the bus stop on a given morning is 0.148.
Step-by-step explanation:
Let the random variable <em>X</em> represent the time a child spends waiting at for the bus as a school bus stop.
The random variable <em>X</em> is exponentially distributed with mean 7 minutes.
Then the parameter of the distribution is,
.
The probability density function of <em>X</em> is:

Compute the probability that the child must wait between 6 and 9 minutes on the bus stop on a given morning as follows:

![=\int\limits^{9}_{6} {\frac{1}{7}\cdot e^{-\frac{1}{7} \cdot x}} \, dx \\\\=\frac{1}{7}\cdot \int\limits^{9}_{6} {e^{-\frac{1}{7} \cdot x}} \, dx \\\\=[-e^{-\frac{1}{7} \cdot x}]^{9}_{6}\\\\=e^{-\frac{1}{7} \cdot 6}-e^{-\frac{1}{7} \cdot 9}\\\\=0.424373-0.276453\\\\=0.14792\\\\\approx 0.148](https://tex.z-dn.net/?f=%3D%5Cint%5Climits%5E%7B9%7D_%7B6%7D%20%7B%5Cfrac%7B1%7D%7B7%7D%5Ccdot%20e%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%20x%7D%7D%20%5C%2C%20dx%20%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B7%7D%5Ccdot%20%5Cint%5Climits%5E%7B9%7D_%7B6%7D%20%7Be%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%20x%7D%7D%20%5C%2C%20dx%20%5C%5C%5C%5C%3D%5B-e%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%20x%7D%5D%5E%7B9%7D_%7B6%7D%5C%5C%5C%5C%3De%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%206%7D-e%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%209%7D%5C%5C%5C%5C%3D0.424373-0.276453%5C%5C%5C%5C%3D0.14792%5C%5C%5C%5C%5Capprox%200.148)
Thus, the probability that the child must wait between 6 and 9 minutes on the bus stop on a given morning is 0.148.
Answer:
Which are equivalent expressions?
Check all that are true.
y + x = 2x
x + x + x + x = 4x (true)
x + x = 2x (true)
x + y + y + x = 2x + 2y (true)
x + y + x + x = 2x + y
Step-by-step explanation:
Your answer should be 3x-x+2=4 hope this helps..
Answer:
the common ratio is either 2 or -2.
the sum of the first 7 terms is then either 765 or 255
Step-by-step explanation:
a geometric sequence or series of progression (these are the most common names for the same thing) means that every new term of the sequence is created by multiplying the previous term by a constant factor which is called the common ratio.
so,
a1
a2 = a1×f
a3 = a2×f = a1×f²
a4 = a3×f = a1×f³
the problem description here tells us
a3 = 4×a1
and from above we know a3 = a1×f².
so, f² = 4
and therefore the common ratio = f = 2 or -2 (we need to keep that in mind).
again, the problem description tells us
a2 + a4 = 30
a1×f + a1×f³ = 30
for f = 2
a1×2 + a1×2³ = 30
2a1 + 8a1 = 30
10a1 = 30
a1 = 3
for f = -2
a1×-2 + a1×(-2)³ = 30
-10a1 = 30
a1 = -3
the sum of the first n terms of a geometric sequence is
sn = a1×(1 - f^(n+1))/(1-f) for f <>1
so, for f = 2
s7 = 3×(1 - 2⁸)/(1-2) = 3×-255/-1 = 3×255 = 765
for f = -2
s7 = -3×(1 - (-2)⁸)/(1 - -2) = -3×(1-256)/3 = -3×-255/3 =
= -1×-255 = 255