Hey there!
<h2>10(2)(2) </h2><h2>10(2) = 20</h2><h2>20(2) = 40</h2><h2>Thus, your answer is: 40</h2>
Good luck on your assignment and enjoy your day!
~LoveYourselfFirst
14 degrees. It equals half the intercepted arc.
(See attached graphic)
(6•x) + 7 = 8
6x + 7 = 8
6x = 1
X = 1
(C) 6 + 3√3
<u>Explanation:</u>
Area of the square = 3
a X a = 3
a² = 3
a = √3
Therefore, QR, RS, SP, PQ = √3
ΔBAC ≅ ΔBQR
Therefore,


In ΔBAC, BA = AC = BC because the triangle is equilateral
So,
BQ = √3
So, BQ, QR, BR = √3 (equilateral triangle)
Let AP and SC be a
So, AQ and RC will be 2a
In ΔAPQ,
(AP)² + (QP)² = (AQ)²
(a)² + (√3)² = (2a)²
a² + 3 = 4a²
3 = 3a²
a = 1
Similarly, in ΔRSC
(SC)² + (RS)² = (RC)²
(a)² + (√3)² = (2a)²
a² + 3 = 4a²
3 = 3a²
a = 1
So, AP and SC = 1
and AQ and RC = 2 X 1 = 2
Therefore, perimeter of the triangle = BQ + QA + AP + PS + SC + RC + BR
Perimeter = √3 + 2 + 1 + √3 + 1 + 2 + √3
Perimeter = 6 + 3√3
Therefore, the perimeter of the triangle is 6 + 3√3