Answer: A.) Removing a few marbles from the petri dish and stirring the rest around as energy is added
B) The high temperature makes the gas molecules spread apart according to Charles's law because this law describes how a gas will behave at constant pressure.
Explanation: The phase transition from solid to liquid involves the use of energy to make the molecules present in solid to break the inter molecular forces and to start moving away from each other as in liquid. The molecules in solid are closely packed whereas in liquids they are loosely packed. Thus less number of molecules are present per unit volume in a liquid. Thus the marbles have to be removed to show less density and the energy has to supplied. Removing all but two marbles from the petri dish and shaking them vigorously as energy is added will give us a more disorderd state called gas in which the molecules are very far apart and the density is least.
B) According to Boyle's law the pressure is inversely proportional to the volume of the gas at constant temperature and constant number of moles.
(At constant temperature and number of moles)
According to Charle's law the volume is directly proportional to the temperature of the gas at constant pressure and constant number of moles.
(At constant pressure and number of moles)
Thus as temperature of the gas increases , the volume also increases, and the density decreases. the gas becomes lighter and thus rises up.
Explanation:
when in equilibrium condition the total sum of anti clockwise moment is equal to the sum of clock wise moment
Answer
Depends on type of mixture. But I think separating the different sized particles through filtration would be a sufficient answer for middle school level unless they have taught you about other mixtures.
Explanation:
Hey,
There are thousands of way to separate mixtures. Each way is specific to the type of mixture. If the mixture is homogeneous processes like distillation can be employed. For heterogeneous mixture filtration can be used to separate particles of different sizes.
The higher the energy density of a fuel, the greater the amount of energy it has stored.
<h3>What is the energy density?</h3>
The energy density of a fuel is defined as the amount of energy it possesses per unit volume or per unit weight.
<h3>Characteristics of the energy density</h3>
- It is the amount of energy accumulated in an energy vector per unit volume or mass.
- In general, higher density energy sources and carriers are preferable, as many end uses require concentration of such energy.
- The packaging of energy in liquid hydrocarbons is the one with the highest energy density, that is, the highest energy per volume unit, hence its high use in the transportation sector.
Therefore, we can conclude that in general, fuels, especially low molecular weight fuels, have high energy densities.
Learn more about the energy density here: brainly.com/question/2165966