The best explanation, though it's controversial, is that a great flood had once covered the earth for a brief period of time.
Answer:
what does it say under the paragraph
Explanation:
Depression in freezing point (Δ

) =

×m×i,
where,

= cryoscopic constant =

,
m= molality of solution = 0.0085 m
i = van't Hoff factor = 2 (For

)
Thus, (Δ

) = 1.86 X 0.0085 X 2 =

Now, (Δ

) =

- T
Here, T = freezing point of solution

= freezing point of solvent =

Thus, T =

- (Δ

) = -
Answer:
c = 0.07 j/g.k
Explanation:
Given data:
Mass of sample = 35 g
Heat absorbed = 48 j
Initial temperature = 293 K
Final temperature = 313 K
Specific heat of substance = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = Final temperature - initial temperature
ΔT = 313 k - 293 K
ΔT = 20 k
Now we will put the values in formula.
48 j = 35 g × c× 20 k
48 j = 700 g.k ×c
c = 48 j/700 g.k
c = 0.07 j/g.k
Correct Answer: Option C
Reason:
<span>The </span>Pauli Exclusion Principle<span> states as '<em>in an atom or molecule, no two electrons can have the same four electronic quantum numbers. Further, an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins.</em>'
</span>
Thus, it can be seen that in option C, electrons in last 2 subshell have electrons with same spin, which is a violation of Pauli Exclusion Principle .