Answer:
The region represented by the equation is a full sphere of radius √3 centered in the origin of coordinates.
Step-by-step explanation:
<em>In a plane xy, the equation that represents a circle with center in the origin, of radius r is</em>

<em>in R³, or a space xyz, we can represent a sphere with its center in the origin, and of radius r, with the equation</em>

So, in this problem we have that

which means that the sphere has a radius of √3.
<u>Finally, our equation is an inequality</u>, and the sphere is equal to, and less than, the calculated radius.
Therefore, the sphere is "full" from the surface to its center.
Answer: x=1
-3x=x-6+2x
-6x=-6
x=1
-72-4x^2+8x^3-36x/x-3
-4(18+x^2-2x^3+9x)/x-3
-4(-2x^3+x^2+9x+18)/x-3
-4(-2x^2x(x-3)-5x x(x-3)-6(x-3) )/x-3
-4 x(-(x-3) ) x (2x^2+5x+6)/x-3
-4 x (-1) x (2x^2 +5x+6)
8x^2+20x+24
Answer:
Step-by-step explanation:
If two angles are supplement of each other then one of the angles must be acute