Let's say we use "x" of the 25% OJ... ok... well, how much juice is really in that "x" liters? well, 25% of it is OJ, the rest is water, how much is 25% of x? well, (25/100) * x, or 0.25x.
likewise, we'll use "y" of the 10% OJ, and it will end up with (10/100) *y or 0.10y of juice in it.
whatever "x" and "y" are, they must add up to 15 Liters, and the juice concentration on that mixture, must also be the sum of their sum concentration.
![\bf \begin{array}{lccclll} &\stackrel{liters}{amount}&\stackrel{juice~\%}{quantity}&\stackrel{juice}{quantity}\\ &------&------&------\\ \textit{25\% juice}&x&0.25&0.25x\\ \textit{10\% juice}&y&0.10&0.10y\\ ------&------&------&------\\ mixture&15&0.17&2.55 \end{array} \\\\\\ \begin{cases} x+y=15\implies \boxed{y}=15-x\\ 0.25x+0.10y=2.55\\ ----------\\ 0.25x+0.10\left(\boxed{15-x} \right)=2.55 \end{cases} \\\\\\ 0.25x-0.10x+1.5=2.55\implies 0.15x=1.05\implies x=\cfrac{1.05}{0.15} \\\\\\ x=7](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Blccclll%7D%0A%26%5Cstackrel%7Bliters%7D%7Bamount%7D%26%5Cstackrel%7Bjuice~%5C%25%7D%7Bquantity%7D%26%5Cstackrel%7Bjuice%7D%7Bquantity%7D%5C%5C%0A%26------%26------%26------%5C%5C%0A%5Ctextit%7B25%5C%25%20juice%7D%26x%260.25%260.25x%5C%5C%0A%5Ctextit%7B10%5C%25%20juice%7D%26y%260.10%260.10y%5C%5C%0A------%26------%26------%26------%5C%5C%0Amixture%2615%260.17%262.55%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Cbegin%7Bcases%7D%0Ax%2By%3D15%5Cimplies%20%5Cboxed%7By%7D%3D15-x%5C%5C%0A0.25x%2B0.10y%3D2.55%5C%5C%0A----------%5C%5C%0A0.25x%2B0.10%5Cleft%28%5Cboxed%7B15-x%7D%20%20%5Cright%29%3D2.55%0A%5Cend%7Bcases%7D%0A%5C%5C%5C%5C%5C%5C%0A0.25x-0.10x%2B1.5%3D2.55%5Cimplies%200.15x%3D1.05%5Cimplies%20x%3D%5Ccfrac%7B1.05%7D%7B0.15%7D%0A%5C%5C%5C%5C%5C%5C%0Ax%3D7)
how much will be it of the 10% juice? well, y = 15 - x.
Answer:
Step-by-step explanation:
It's not clear but yeah it's fine if you ask a lot cause everytime I see this I know it's you :)
It is true that a parallelogram has symmetry with respect to the point of intersection of its diagonals.
<span>If Kate took out a loan of $9,710 and it took her 5 years to pay off she would have to pay 60 months of interest. Given that, the interest rate of 5.9% would of been $572.89 the first month. Use this information to find the answer.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
</span>
Answer:
Equation of tangent plane to given parametric equation is:
![\frac{\sqrt{3}}{2}x-\frac{1}{2}y+z=\frac{\pi}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Dx-%5Cfrac%7B1%7D%7B2%7Dy%2Bz%3D%5Cfrac%7B%5Cpi%7D%7B3%7D)
Step-by-step explanation:
Given equation
---(1)
Normal vector tangent to plane is:
![\hat{n} = \hat{r_{u}} \times \hat{r_{v}}\\r_{u}=\frac{\partial r}{\partial u}\\r_{v}=\frac{\partial r}{\partial v}](https://tex.z-dn.net/?f=%5Chat%7Bn%7D%20%3D%20%5Chat%7Br_%7Bu%7D%7D%20%5Ctimes%20%5Chat%7Br_%7Bv%7D%7D%5C%5Cr_%7Bu%7D%3D%5Cfrac%7B%5Cpartial%20r%7D%7B%5Cpartial%20u%7D%5C%5Cr_%7Bv%7D%3D%5Cfrac%7B%5Cpartial%20r%7D%7B%5Cpartial%20v%7D)
![\frac{\partial r}{\partial u} =cos(v)\hat{i}+sin(v)\hat{j}\\\frac{\partial r}{\partial v}=-usin(v)\hat{i}+u cos(v)\hat{j}+\hat{k}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpartial%20r%7D%7B%5Cpartial%20u%7D%20%3Dcos%28v%29%5Chat%7Bi%7D%2Bsin%28v%29%5Chat%7Bj%7D%5C%5C%5Cfrac%7B%5Cpartial%20r%7D%7B%5Cpartial%20v%7D%3D-usin%28v%29%5Chat%7Bi%7D%2Bu%20cos%28v%29%5Chat%7Bj%7D%2B%5Chat%7Bk%7D)
Normal vector tangent to plane is given by:
![r_{u} \times r_{v} =det\left[\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\cos(v)&sin(v)&0\\-usin(v)&ucos(v)&1\end{array}\right]](https://tex.z-dn.net/?f=r_%7Bu%7D%20%5Ctimes%20r_%7Bv%7D%20%3Ddet%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Chat%7Bi%7D%26%5Chat%7Bj%7D%26%5Chat%7Bk%7D%5C%5Ccos%28v%29%26sin%28v%29%260%5C%5C-usin%28v%29%26ucos%28v%29%261%5Cend%7Barray%7D%5Cright%5D)
Expanding with first row
![\hat{n} = \hat{i} \begin{vmatrix} sin(v)&0\\ucos(v) &1\end{vmatrix}- \hat{j} \begin{vmatrix} cos(v)&0\\-usin(v) &1\end{vmatrix}+\hat{k} \begin{vmatrix} cos(v)&sin(v)\\-usin(v) &ucos(v)\end{vmatrix}\\\hat{n}=sin(v)\hat{i}-cos(v)\hat{j}+u(cos^{2}v+sin^{2}v)\hat{k}\\\hat{n}=sin(v)\hat{i}-cos(v)\hat{j}+u\hat{k}\\](https://tex.z-dn.net/?f=%5Chat%7Bn%7D%20%3D%20%5Chat%7Bi%7D%20%5Cbegin%7Bvmatrix%7D%20sin%28v%29%260%5C%5Cucos%28v%29%20%261%5Cend%7Bvmatrix%7D-%20%5Chat%7Bj%7D%20%5Cbegin%7Bvmatrix%7D%20cos%28v%29%260%5C%5C-usin%28v%29%20%261%5Cend%7Bvmatrix%7D%2B%5Chat%7Bk%7D%20%5Cbegin%7Bvmatrix%7D%20cos%28v%29%26sin%28v%29%5C%5C-usin%28v%29%20%26ucos%28v%29%5Cend%7Bvmatrix%7D%5C%5C%5Chat%7Bn%7D%3Dsin%28v%29%5Chat%7Bi%7D-cos%28v%29%5Chat%7Bj%7D%2Bu%28cos%5E%7B2%7Dv%2Bsin%5E%7B2%7Dv%29%5Chat%7Bk%7D%5C%5C%5Chat%7Bn%7D%3Dsin%28v%29%5Chat%7Bi%7D-cos%28v%29%5Chat%7Bj%7D%2Bu%5Chat%7Bk%7D%5C%5C)
at u=5, v =π/3
---(2)
at u=5, v =π/3 (1) becomes,
![r(5, \frac{\pi}{3})=5 cos (\frac{\pi}{3})\hat{i}+5sin (\frac{\pi}{3})\hat{j}+\frac{\pi}{3}\hat{k}](https://tex.z-dn.net/?f=r%285%2C%20%5Cfrac%7B%5Cpi%7D%7B3%7D%29%3D5%20cos%20%28%5Cfrac%7B%5Cpi%7D%7B3%7D%29%5Chat%7Bi%7D%2B5sin%20%28%5Cfrac%7B%5Cpi%7D%7B3%7D%29%5Chat%7Bj%7D%2B%5Cfrac%7B%5Cpi%7D%7B3%7D%5Chat%7Bk%7D)
![r(5, \frac{\pi}{3})=5(\frac{1}{2})\hat{i}+5 (\frac{\sqrt{3}}{2})\hat{j}+\frac{\pi}{3}\hat{k}](https://tex.z-dn.net/?f=r%285%2C%20%5Cfrac%7B%5Cpi%7D%7B3%7D%29%3D5%28%5Cfrac%7B1%7D%7B2%7D%29%5Chat%7Bi%7D%2B5%20%28%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D%29%5Chat%7Bj%7D%2B%5Cfrac%7B%5Cpi%7D%7B3%7D%5Chat%7Bk%7D)
![r(5, \frac{\pi}{3})=\frac{5}{2}\hat{i}+(\frac{5\sqrt{3}}{2})\hat{j}+\frac{\pi}{3}\hat{k}](https://tex.z-dn.net/?f=r%285%2C%20%5Cfrac%7B%5Cpi%7D%7B3%7D%29%3D%5Cfrac%7B5%7D%7B2%7D%5Chat%7Bi%7D%2B%28%5Cfrac%7B5%5Csqrt%7B3%7D%7D%7B2%7D%29%5Chat%7Bj%7D%2B%5Cfrac%7B%5Cpi%7D%7B3%7D%5Chat%7Bk%7D)
From above eq coordinates of r₀ can be found as:
![r_{o}=(\frac{5}{2},\frac{5\sqrt{3}}{2},\frac{\pi}{3})](https://tex.z-dn.net/?f=r_%7Bo%7D%3D%28%5Cfrac%7B5%7D%7B2%7D%2C%5Cfrac%7B5%5Csqrt%7B3%7D%7D%7B2%7D%2C%5Cfrac%7B%5Cpi%7D%7B3%7D%29)
From (2) coordinates of normal vector can be found as
Equation of tangent line can be found as:
![(\hat{r}-\hat{r_{o}}).\hat{n}=0\\((x-\frac{5}{2})\hat{i}+(y-\frac{5\sqrt{3}}{2})\hat{j}+(z-\frac{\pi}{3})\hat{k})(\frac{\sqrt{3} }{2}\hat{i}-\frac{1}{2}\hat{j}+\hat{k})=0\\\frac{\sqrt{3}}{2}x-\frac{5\sqrt{3}}{4}-\frac{1}{2}y+\frac{5\sqrt{3}}{4}+z-\frac{\pi}{3}=0\\\frac{\sqrt{3}}{2}x-\frac{1}{2}y+z=\frac{\pi}{3}](https://tex.z-dn.net/?f=%28%5Chat%7Br%7D-%5Chat%7Br_%7Bo%7D%7D%29.%5Chat%7Bn%7D%3D0%5C%5C%28%28x-%5Cfrac%7B5%7D%7B2%7D%29%5Chat%7Bi%7D%2B%28y-%5Cfrac%7B5%5Csqrt%7B3%7D%7D%7B2%7D%29%5Chat%7Bj%7D%2B%28z-%5Cfrac%7B%5Cpi%7D%7B3%7D%29%5Chat%7Bk%7D%29%28%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7D%5Chat%7Bi%7D-%5Cfrac%7B1%7D%7B2%7D%5Chat%7Bj%7D%2B%5Chat%7Bk%7D%29%3D0%5C%5C%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Dx-%5Cfrac%7B5%5Csqrt%7B3%7D%7D%7B4%7D-%5Cfrac%7B1%7D%7B2%7Dy%2B%5Cfrac%7B5%5Csqrt%7B3%7D%7D%7B4%7D%2Bz-%5Cfrac%7B%5Cpi%7D%7B3%7D%3D0%5C%5C%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Dx-%5Cfrac%7B1%7D%7B2%7Dy%2Bz%3D%5Cfrac%7B%5Cpi%7D%7B3%7D)