Answer:
1. Kite,
2. Kite.
Step-by-step explanation:
1. The quadrilateral form will have 2 equal pairs of adjacent sides which is a kite.
2. Find the slope and length of the sides:-
slopes (9-6)/ 0-3) = -1
(6-1) / (3-0) = 5/3
(6-1) / (-3-0) = -5/3
(9-6)/(3) = 1
Lengths = sqrt(9 + 9) = sqrt18
sqrt(25 + 9) = sqrt34
sqrt (25 + 9) = sqrt34
sqrt (9 + 9) = sqrt18.
This is another kite.
Answer:
The inequality is 12.5v + 70 ≥ 215
and the amount of visits they can make is 12 visits
Step-by-step explanation:
if you take away (subtract) 70 from both sides, you'll get
12.5v ≥ 145
and when you divide both sides by 12.5, you'll get 11.6, or 12
Answer:
The probability that a student taking only math will get picked is approximately 29%
Step-by-step explanation: This is because out of the total number of students taking math (95), 52 of such students are also taking science. In order to get the number of students only taking math you have to do 95-52=43 and to put that against the amount of total students the ratio would be 43:147 or 42/147 and if you plug 42/147 into a calculator you will recieve a long decimal that you can then round to 29%.
Answer:
![\boxed{\bf\: The \: park \: sold \boxed{ 34{}} \: child \: tickets.}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cbf%5C%3A%20The%20%20%5C%3A%20park%20%20%5C%3A%20sold%20%20%5Cboxed%7B%2034%7B%7D%7D%20%5C%3A%20child%20%20%5C%3A%20tickets.%7D)
Step-by-step explanation:
<u>Given:</u>
Percentage of Tickets sold at a water park - 68%
The Number of Tickets if the park sold in all - 50
<u>To </u><u>Find:</u>
The Number of child tickets the park sold.
<u>Solution:</u>
We know that 68% equals to 68/100.
Step 1: Multiply 68/100 by 50 which is the number of tickets the park sold :-
![\sf \: = \: \cfrac{68}{100} \times 50](https://tex.z-dn.net/?f=%5Csf%20%5C%3A%20%20%3D%20%20%5C%3A%20%20%5Ccfrac%7B68%7D%7B100%7D%20%20%5Ctimes%2050)
<u>Note</u>:The Simplified form of 68/100 * 50 would be the answer to this question.
Step 2: <u>Cancel One zero of 50 and one zero of 100,That is</u>:-
![\sf = \cfrac{68}{ 10\cancel0} \times 5 \cancel0](https://tex.z-dn.net/?f=%20%5Csf%20%3D%20%20%5Ccfrac%7B68%7D%7B%2010%5Ccancel0%7D%20%20%5Ctimes%205%20%5Ccancel0)
<em>Results to,</em>
![\sf = \cfrac{68}{10} \times 5](https://tex.z-dn.net/?f=%5Csf%20%20%3D%20%5Ccfrac%7B68%7D%7B10%7D%20%20%5Ctimes%205)
Step 3: <u>Cancel 5 and 10, That is</u>:-
![\sf = \cfrac{68}{ \cancel{10 }} \times \cancel5](https://tex.z-dn.net/?f=%5Csf%20%20%3D%20%5Ccfrac%7B68%7D%7B%20%5Ccancel%7B10%20%7D%7D%20%20%5Ctimes%20%20%5Ccancel5)
<em>Results to,</em>
![\sf =\: \cfrac{68}{2} \times 1](https://tex.z-dn.net/?f=%5Csf%20%3D%5C%3A%20%20%5Ccfrac%7B68%7D%7B2%7D%20%20%5Ctimes%201)
![\sf = \cfrac{68}{2}](https://tex.z-dn.net/?f=%5Csf%20%3D%20%5Ccfrac%7B68%7D%7B2%7D%20)
Step 4: <u>Cancel 68 and 2, That is</u>:-
![\sf =\: \cfrac{ \cancel{68}}{ \cancel2}](https://tex.z-dn.net/?f=%5Csf%20%3D%5C%3A%20%20%5Ccfrac%7B%20%5Ccancel%7B68%7D%7D%7B%20%5Ccancel2%7D%20)
<em>Results to,</em>
![\sf = \cfrac{34}{1}](https://tex.z-dn.net/?f=%5Csf%20%20%3D%20%20%5Ccfrac%7B34%7D%7B1%7D%20)
![\sf = 34](https://tex.z-dn.net/?f=%5Csf%20%20%3D%2034)
34 is the result.
Hence,
![\underline{ \rm \: The \: park \: sold \: \bold{ 34 } \: child \: tickets.}](https://tex.z-dn.net/?f=%5Cunderline%7B%20%5Crm%20%5C%3A%20The%20%20%5C%3A%20park%20%20%5C%3A%20sold%20%20%5C%3A%20%5Cbold%7B%2034%20%7D%20%5C%3A%20child%20%20%5C%3A%20tickets.%7D)
________________________________
I hope this helps!
Let me know if you have any questions.I am joyous to help!
Answer:
See explanation.
Step-by-step explanation:
We need a point and a slope to have a point slope equation.
![y-y_{1}=m(x-x_{1})](https://tex.z-dn.net/?f=y-y_%7B1%7D%3Dm%28x-x_%7B1%7D%29)
We need a slope and y-intercept to write in slope intercept form.
![y=mx+b](https://tex.z-dn.net/?f=y%3Dmx%2Bb)
A)
or ![y=\frac{1}{2}x+3](https://tex.z-dn.net/?f=y%3D%5Cfrac%7B1%7D%7B2%7Dx%2B3)
B) ![y+1=-1(x-2)](https://tex.z-dn.net/?f=y%2B1%3D-1%28x-2%29)
C) ![y-1=0(x-1)](https://tex.z-dn.net/?f=y-1%3D0%28x-1%29)
D) ![y=-3x+8](https://tex.z-dn.net/?f=y%3D-3x%2B8)