<h2>
The required 'option a) - 9 ,
, 4' is correct.</h2>
Step-by-step explanation:
We have,
f(x) = (x + 9)(x − 4)(6x + 1)
To find, all zeroes of the given equation = ?
∴ f(x) = (x + 9)(x − 4)(6x + 1)
⇒ (x + 9)(x − 4)(6x + 1) = 0
⇒ x + 9 = 0 or, x − 4 = 0 or, 6x + 1 = 0
⇒ x + 9 = 0 ⇒ x = - 9
⇒ x − 4 = 0 ⇒ x = 4
⇒ 6x + 1 = 0
⇒ 6x = - 1
⇒ x = 
∴ x = - 9 ,
, 4
Thus, the required 'option a) - 9 ,
, 4' is correct.
Answer:
(7, -6)
Step-by-step explanation:
You want to find point X on the segment from A to B such that ...
(X -A)/(B -X) = 3/2
2(X -A) = 3(B -X) . . . . . . cross multiply
2X -2A = 3B -3X . . . . . eliminate parentheses
5X = 2A +3B . . . . . . . . add 3X +2A
X = (2A +3B)/5 . . . . . . . divide by 5
Filling in the given points for A and B, we have ...
X = (2(4, -3) +3(9, -8))/5 = (8+27, -6-24)/5 = (35, -30)/5
X = (7, -6)
The point that divides the segment in the proportions 3:2 is (7, -6).