1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lbvjy [14]
3 years ago
7

Consider the expansion of (a + b)^12. Determine the coefficients for the terms with the powers of a and b shown.

Mathematics
1 answer:
ratelena [41]3 years ago
4 0

Answer:

The answer to your question is:

Step-by-step explanation:

                                             (a + b)¹²

a¹² + 12a¹¹b + 66a¹⁰b² + 220a⁹b³ + 495a⁸b⁴ + 792a⁷b⁵ + 924a⁶b⁶ + 792a⁵b⁷

+ 495a⁴b⁸ + 220a³b⁹ + 66a²b¹⁰ + 12ab¹¹ + b¹²

a. a²b¹⁰   = 66

b. a⁵b⁷   = 792

c. a⁸b⁴ = 495

You might be interested in
3/2b+1/4=5/8<br> What is it?<br> Please help
Vedmedyk [2.9K]

Answer:

3.2b=5.8-1.4 3/2b=4/4 so b=3.2/4.4

7 0
3 years ago
Consider the following. C: counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1), starting at (0, 0)
horsena [70]

Answer:

a.

\mathbf{r_1 = (t,0)  \implies  t = 0 \ to \ 1}

\mathbf{r_2 = (2-t,t-1)  \implies  t = 1 \ to \ 2}

\mathbf{r_3 = (0,3-t)  \implies  t = 2 \ to \ 3}

b.

\mathbf{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}+11}{6}}

Step-by-step explanation:

Given that:

C: counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1), starting at (0, 0)

a. Find a piecewise smooth parametrization of the path C.

r(t) = { 0

If C: counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1),

Then:

C_1 = (0,0) \\ \\  C_2 = (1,0) \\ \\ C_3 = (0,1)

Also:

\mathtt{r_1 = (0,0) + t(1,0) = (t,0) }

\mathbf{r_1 = (t,0)  \implies  t = 0 \ to \ 1}

\mathtt{r_2 = (1,0) + t(-1,1) = (1- t,t) }

\mathbf{r_2 = (2-t,t-1)  \implies  t = 1 \ to \ 2}

\mathtt{r_3 = (0,1) + t(0,-1) = (0,1-t) }

\mathbf{r_3 = (0,3-t)  \implies  t = 2 \ to \ 3}

b Evaluate :

Integral of (x+2y^1/2)ds

\mathtt{\int  \limits ^1_{c1} (x+ 2 \sqrt{y}) ds = \int  \limits ^1_{0} \ (t + 0)  \sqrt{1} } \\ \\ \mathtt{  \int  \limits ^1_{c1} (x+ 2 \sqrt{y}) ds = \begin {pmatrix} \dfrac{t^2}{2} \end {pmatrix} }^1_0 \\ \\  \mathtt{\int  \limits ^1_{c1} (x+ 2 \sqrt{y}) ds = \dfrac{1}{2}}

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds = \int  \limits (x+2 \sqrt{y} \sqrt{(\dfrac{dx}{dt})^2 + (\dfrac{dy}{dt})^2 \ dt } }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds = \int  \limits 2- t + 2\sqrt{t-1}  \ \sqrt{1+1}  }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2} \int  \limits^2_1  2- t + 2\sqrt{t-1} \ dt }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} 2t - \dfrac{t^2}{2}+ \dfrac{2(t-1)^{3/2}}{3} (2)  \end {pmatrix} ^2_1}

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} 2 -\dfrac{1}{2} (4-1)+\dfrac{4}{3} (1)^{3/2} -0 \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} 2 -\dfrac{3}{2} + \dfrac{4}{3} \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} \dfrac{12-9+8}{6} \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} \dfrac{11}{6} \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =   \dfrac{ \sqrt{2}  }{6} \  (11 )}

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =   \dfrac{ 11 \sqrt{2}  }{6}}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds =  \int  \limits ^3_2 0+2 \sqrt{3-t}   \ \sqrt{0+1} }

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds =  \int  \limits ^3_2 2 \sqrt{3-t}   \ dt}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds =  \int  \limits^3_2 \begin {pmatrix}  \dfrac{-2(3-t)^{3/2}}{3} (2) \end {pmatrix}^3_2 }

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds = -\dfrac{4}{3} [(0)-(1)]}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds = -\dfrac{4}{3} [-(1)]}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds = \dfrac{4}{3}}

\mathtt{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}}{6}+\dfrac{1}{2}+ \dfrac{4}{3}}

\mathtt{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}+3+8}{6}}

\mathbf{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}+11}{6}}

5 0
3 years ago
Can someone please tell me what is 19x8+80-7?
s2008m [1.1K]

Answer:

225

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Which angle is complementary to
Feliz [49]

Answer:

angle AOC is what i think it is but please dont go on my word wait to see what other people say first sorry

3 0
3 years ago
Read 2 more answers
A machine at a food-distribution factory fills boxes of rice. The distribution of the weights of filled boxes of rice has an
Darya [45]

Answer:

I believe it is c

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • Write the equation −2x−4y=−8 in slope-intercept form. Then graph the line described by the equation.
    12·1 answer
  • Jeremy can determine the total number of miles walked at a constant speed by using the formula an=an-1+3. If a1=2, what are the
    14·1 answer
  • Ricardo is constructing the inscribed circle for △ABC . He has already used his compass and straightedge to complete the part of
    15·2 answers
  • Help me I'm dying please help!
    6·1 answer
  • Question 101 pts Suppose that you had consumer group wanted to test to see if weight of participants in a weight loss program ch
    9·1 answer
  • <img src="https://tex.z-dn.net/?f=%20%5Csqrt%7B3x%20%2B%2013%7D%20%20%3D%20%20%5Csqrt%7B6x%20%2B%201%7D%20" id="TexFormula1" tit
    5·2 answers
  • I need help I wanna make a high score on dis yall
    5·1 answer
  • Please help me with this one ☝️
    8·1 answer
  • If the slope of a line is 2/3 and one point is (1, 1), what could be another point?
    12·1 answer
  • What is the linear equation of the horizontal line that passes through the point (–3, 4)?show your work
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!