1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leokris [45]
4 years ago
13

Did anyone take this??

Mathematics
1 answer:
Mademuasel [1]4 years ago
3 0

Step-by-step explanation:

isolate x:

subtract 13 from both sides to get -2x < -4

divide both sides by -2 to get x > 2

(the sign changes direction because we divided by a negative)

because it's non inclusive (no equal to) we use an open circle arrow to point right starting from 2

You might be interested in
Hi, how do we do this question?​
Nutka1998 [239]

Answer:

\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int {\frac{2x}{3x + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx
  4. [1st Integral] Reverse Power Rule:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 3x + 1
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3 \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx
  2. [Integral] U-Substitution:                                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du
  3. [Integral] Logarithmic Integration:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C
  4. Back-Substitute:                                                                                            \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C
  5. Factor:                                                                                                           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3}  \bigg) + C
  6. Rewrite:                                                                                                         \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Hii please help i’ll give brainliest
erica [24]
Quadrant 2
The last answer choice
7 0
3 years ago
How do you find the x?
AnnyKZ [126]
There are 180 degrees total in a triangle and the tell you one angle is 90. So you solve the equation 4x+6x=90. So x=9
3 0
3 years ago
Fran graphs the equations y = 2x2 – 2 and y = –0.5x + 4. Her graph is shown below.
kenny6666 [7]
The line and parabola intersect at about x=-2 and x=1.5 so the solution is A. x = -2
8 0
3 years ago
Compleate the function table. Then write a rule for the function.
12345 [234]
Rule: Y=X-2
1st blank spot: -5
2nd blank spot: -3
3rd blank spot: -2

Hope this helped! :)
4 0
4 years ago
Other questions:
  • GIVING 20 POINT AND BRAINLY
    10·2 answers
  • What is the solution to the equation1 over the square root of 8 = 4(m − 2)? (1 point)
    7·1 answer
  • The sum of nine and six-tenths and a number is thirteen and two-tenths. What is the number?
    14·2 answers
  • Please help!! I'll give brainliest and all 35 of my points!
    6·1 answer
  • Graph the line through point (1,1) with slope 2.
    9·1 answer
  • The ice skating rink charges an hourly fee for skating and $3 to rent skates for the day. Gillian rented skates and skated for 3
    5·2 answers
  • Are the two expressions equivalent when x=5
    14·2 answers
  • 3 min 34 sec + 7 min 46 sec <br><br> 24 lb 9 oz - 3 lb 11 oz
    14·1 answer
  • SOMEONE PLS HELP ME: The sum of three consecutive EVEN numbers is 48. What are the smallest of these numbers?
    10·2 answers
  • El precio de la tortilla aumentó 50% en el primer mes. ¿Qué fracción corresponde con este aumento?​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!