9.50 + (2.20)r
For example if he fixed 3 watches
9.50 + (2.20)3
We plug in 3 for r and he makes 6.60 extra.
93.86 is your answer.
I hope this helps!
Check the picture below on the left-side.
we know the central angle of the "empty" area is 120°, however the legs coming from the center of the circle, namely the radius, are always 6, therefore the legs stemming from the 120° angle, are both 6, making that triangle an isosceles.
now, using the "inscribed angle" theorem, check the picture on the right-side, we know that the inscribed angle there, in red, is 30°, that means the intercepted arc is twice as much, thus 60°, and since arcs get their angle measurement from the central angle they're in, the central angle making up that arc is also 60°, as in the picture.
so, the shaded area is really just the area of that circle's "sector" with 60°, PLUS the area of the circle's "segment" with 120°.

![\bf \textit{area of a segment of a circle}\\\\ A_y=\cfrac{r^2}{2}\left[\cfrac{\pi \theta }{180}~-~sin(\theta ) \right] \begin{cases} r=radius\\ \theta =angle~in\\ \qquad degrees\\ ------\\ r=6\\ \theta =120 \end{cases}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20segment%20of%20a%20circle%7D%5C%5C%5C%5C%0AA_y%3D%5Ccfrac%7Br%5E2%7D%7B2%7D%5Cleft%5B%5Ccfrac%7B%5Cpi%20%5Ctheta%20%7D%7B180%7D~-~sin%28%5Ctheta%20%29%20%20%5Cright%5D%0A%5Cbegin%7Bcases%7D%0Ar%3Dradius%5C%5C%0A%5Ctheta%20%3Dangle~in%5C%5C%0A%5Cqquad%20degrees%5C%5C%0A------%5C%5C%0Ar%3D6%5C%5C%0A%5Ctheta%20%3D120%0A%5Cend%7Bcases%7D)
1. y = 2/3x - 5
2. 4x - 6y = 30
Divide 2. by 2
3. 2x - 3y = 15
Substitute 1. into 3.
4. 2x - 3(2/3x - 5) = 15
5. 2x - 2x + 15 = 15
6. 15 = 15
False. There are an infinite number of solutions.
Answer:
Below in bold.
Step-by-step explanation:
A.This is the number of combinations of 6 from 15
= 15C6
= 15! / (15-6)! 6!
= 5,005 ways.
B. This is the number of permutaions of 6 from 15:
= 15! / (15-6)!
= 3,603,600 ways.