Answer:
Assuming that's in python, the answer would be 4
Explanation:
The ** operator is for raising a number to a power.
The // operator returns the number of times the right number can fit into the left (i.e round division).
So the answer would be three squared over two rounded down, or 4.
Big-O notation is a way to describe a function that represents the n amount of times a program/function needs to be executed.
(I'm assuming that := is a typo and you mean just =, by the way)
In your case, you have two loops, nested within each other, and both loop to n (inclusive, meaning, that you loop for when i or j is equal to n), and both loops iterate by 1 each loop.
This means that both loops will therefore execute an n amount of times. Now, if the loops were NOT nested, our big-O would be O(2n), because 2 loops would run an n amount of times.
HOWEVER, since the j-loop is nested within i-loop, the j-loop executes every time the i-loop <span>ITERATES.
</span>
As previously mentioned, for every i-loop, there would be an n amount of executions. So if the i-loop is called an n amount of times by the j loop (which executes n times), the big-O notation would be O(n*n), or O(n^2).
(tl;dr) In basic, it is O(n^2) because the loops are nested, meaning that the i-loop would be called n times, and for each iteration, it would call the j-loop n times, resulting in n*n runs.
A way to verify this is to write and test program the above. I sometimes find it easier to wrap my head around concepts after testing them myself.
Answer:
In other words, the CSS rules can "cascade" in their order of precedence. Where the rules are located is one factor in the order of precedence. The location order of precedence is: browser default rules, external style sheet rules, embedded styles, and inline style rules.