Answer:
105 km
Explanation:
The motorist was going 30 km/hr, and it took 3 hours 30 minutes. That's 3.5 hours. 3.5×30=105
Answer:
D.) Transfer input energy from the power source throughout the machine.
Explanation:
Since the complex abnormalities of energy efficiency is depicted by the autonomy within self-operating machines, the correct answer is D.
Answer:
A four-stroke cycle engine is an internal combustion engine that utilizes four distinct piston strokes (intake, compression, power, and exhaust) to complete one operating cycle. The piston make two complete passes in the cylinder to complete one operating cycle.
Explanation:
Answer:
I'm going to make a list of everything you need to consider for the supervision and design of the bridge.
1. the materials with which you are going to build it.
2. the length of the bridge.
3. The dynamic and static load to which the bridge will be subjected.
4. How corrosive is the environment where it will be built.
5.wind forces
6. The force due to possible earthquakes.
7. If it is going to be built in an environment where snow falls.
8. The bridge is unique,so the shape has a geometry that resists loads?.
9. bridge costs.
10. Personal and necessary machines.
11. how much the river grows
Answer:
45.3 MN
Explanation:
The forging force at the end of the stroke is given by
F = Y.π.r².[1 + (2μr/3h)]
The final height, h is given as h = 100/2
h = 50 mm
Next, we find the final radius by applying the volume constancy law
volumes before deformation = volumes after deformation
π * 75² * 2 * 100 = π * r² * 2 * 50
75² * 2 = r²
r² = 11250
r = √11250
r = 106 mm
E = In(100/50)
E = 0.69
From the graph flow, we find that Y = 1000 MPa, and thus, we apply the formula
F = Y.π.r².[1 + (2μr/3h)]
F = 1000 * 3.142 * 0.106² * [1 + (2 * 0.2 * 0.106/ 3 * 0.05)]
F = 35.3 * [1 + 0.2826]
F = 35.3 * 1.2826
F = 45.3 MN