1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
QveST [7]
2 years ago
6

Does anybody want 20 points? They're free get 'em while ya can...

Engineering
2 answers:
DedPeter [7]2 years ago
4 0

Answer:

hi

Explanation:

Zanzabum2 years ago
4 0

Answer:

i want the points

Explanation:

You might be interested in
Which is equal to a temperature of 50°F?<br><br> 18°C<br> 46°C<br> 10°C<br> 32°C
Ludmilka [50]

Answer:

10°C degrees po ang sagot

8 0
3 years ago
Read 2 more answers
8. Two 40 ft long wires made of differing materials are supported from the ceiling of a testing laboratory. Wire (1) is made of
san4es73 [151]

Answer:

Material K has a modulus of elasticity E=3.389× 10¹¹ Pa

Material H has a modulus of elasticity E=1.009 × 10⁹ Pa

Material K has higher value of modulus of elasticity than material H

Material K is stiffer.

Explanation:

Wire 1 material H

Length=L = 40 ft =12.192 m

Diameter= 3/8 in = 0.009525 m

Area= A= πr²,where r=0.009525/2 =0.004763

A=3.142*0.004763² =0.00007126 m²

Force, F= 225 lb=  225*4.45 =1001.25 N

Change in length =Δ L= 0.10 in = 0.00254

To find modulus of elasticity apply'

E=F*L/A*ΔL

E=1001.25*12.192/(0.004763*0.00254)

E= 1009027923.58 Pa

E=1.009 × 10⁹ Pa

For Wire 2 material K

Length=L= 40 ft =12.192 m

Diameter = 3/16 in = 0.1875 in = 0.004763 m

Area= πr² = 3.142 * (0.004763/2)² = 0.00000567154 m²

Force, F= 225 lb=  225*4.45 =1001.25 N

Change in length =Δ L= 0.25 in =0.00635 m

To find modulus of elasticity apply'

E=F*L/A*ΔL

E= (1001.25*12.192)/(0.00000567154 * 0.00635 )

E=338955422575 Pa

E=3.389× 10¹¹ Pa

Material  K has a greater modulus of elasticity

The material with higher value of E is stiffer than that with low value of E.The stiffer material is K.

8 0
3 years ago
Showing all of your work and algebra,generate an approximate expression for T as a function ofthe other variables. (b) Explain w
shusha [124]

Answer:

Following the ways of dealing with incomplete questions, i was able to get the complete question, please look at the attachment for ans.

5 0
3 years ago
2. A counter flow tube-shell heat exchanger is used to heat a cold water stream from 18 to 78oC at a flow rate of 1 kg/s. Heatin
Anastaziya [24]

Answer:

a) L = 220\,m, b) U_{o} \approx 0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C}

Explanation:

a) The counterflow heat exchanger is presented in the attachment. Given that cold water is an uncompressible fluid, specific heat does not vary significantly with changes on temperature. Let assume that cold water has the following specific heat:

c_{p,c} = 4.186\,\frac{kJ}{kg\cdot ^{\textdegree}C}

The effectiveness of the counterflow heat exchanger as a function of the capacity ratio and NTU is:

\epsilon = \frac{1-e^{-NTU\cdot(1-c)}}{1-c\cdot e^{-NTU\cdot (1-c)}}

The capacity ratio is:

c = \frac{C_{min}}{C_{max}}

c = \frac{(1\,\frac{kg}{s} )\cdot(4.186\,\frac{kW}{kg^{\textdegree}C} )}{(1.8\,\frac{kg}{s} )\cdot(4.30\,\frac{kW}{kg^{\textdegree}C} )}

c = 0.541

Heat exchangers with NTU greater than 3 have enormous heat transfer surfaces and are not justified economically. Let consider that NTU = 2.5. The efectiveness of the heat exchanger is:

\epsilon = \frac{1-e^{-(2.5)\cdot(1-0.541)}}{1-(2.5)\cdot e^{-(2.5)\cdot (1-0.541)}}

\epsilon \approx 0.824

The real heat transfer rate is:

\dot Q = \epsilon \cdot \dot Q_{max}

\dot Q = \epsilon \cdot C_{min}\cdot (T_{h,in}-T_{c,in})

\dot Q = (0.824)\cdot (4.186\,\frac{kW}{^{\textdegree}C} )\cdot (160^{\textdegree}C-18^{\textdegree}C)

\dot Q = 489.795\,kW

The exit temperature of the hot fluid is:

\dot Q = \dot m_{h}\cdot c_{p,h}\cdot (T_{h,in}-T_{h,out})

T_{h,out} = T_{h,in} - \frac{\dot Q}{\dot m_{h}\cdot c_{p,h}}

T_{h,out} = 160^{\textdegree}C + \frac{489.795\,kW}{(7.74\,\frac{kW}{^{\textdegree}C} )}

T_{h,out} = 96.719^{\textdegree}C

The log mean temperature difference is determined herein:

\Delta T_{lm} = \frac{(T_{h,in}-T_{c, out})-(T_{h,out}-T_{c,in})}{\ln\frac{T_{h,in}-T_{c, out}}{T_{h,out}-T_{c,in}} }

\Delta T_{lm} = \frac{(160^{\textdegree}C-78^{\textdegree}C)-(96.719^{\textdegree}C-18^{\textdegree}C)}{\ln\frac{160^{\textdegree}C-78^{\textdegree}C}{96.719^{\textdegree}C-18^{\textdegree}C} }

\Delta T_{lm} \approx 80.348^{\textdegree}C

The heat transfer surface area is:

A_{i} = \frac{\dot Q}{U_{i}\cdot \Delta T_{lm}}

A_{i} = \frac{489.795\,kW}{(0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C} )\cdot(80.348^{\textdegree}C) }

A_{i} = 9.676\,m^{2}

Length of a single pass counter flow heat exchanger is:

L =\frac{A_{i}}{\pi\cdot D_{i}}

L = \frac{9.676\,m^{2}}{\pi\cdot (0.014\,m)}

L = 220\,m

b) Given that tube wall is very thin, inner and outer heat transfer areas are similar and, consequently, the cold side heat transfer coefficient is approximately equal to the hot side heat transfer coefficient.

U_{o} \approx 0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C}

5 0
3 years ago
Since the engineering design process may take the engineer back to its beginning, the process is considered ________
Valentin [98]

Answer:

Cyclical

Explanation:

I looked at the next question on edgenuity and it said it in the question.

7 0
3 years ago
Other questions:
  • The density of oxygen contained in a tank is 2.0 kg/m3 when the temperature is 25 °C. Determine the gage pressure of the gas if
    12·1 answer
  • what are the characteristics of an ideal fluid the general relation between shear stress and velocity gradient​
    10·1 answer
  • The basic barometer can be used to measure the height of a building. If the barometric readings at the top and at the bottom of
    13·1 answer
  • How to code the round maze in CoderZ?
    5·1 answer
  • Which of the following are made up of electrical probes and connectors?
    8·1 answer
  • Air is compressed steadily from 100kPa and 20oC to 1MPa by an adiabatic compressor. If the mass flow rate of the air is 1kg/s an
    12·1 answer
  • List five pieces of personal safety equipment which must be in everyday use in the workshop​
    15·1 answer
  • Engineers please help im not good when it comes to drawing​
    8·1 answer
  • The percentage modulation of AM changes from 50% to 70%. Originally at 50% modulation, carrier power was 70 W. Now, determine th
    15·1 answer
  • Which one of the following best defines hardness: (a) energy absorbed by a material when an object strikes its surface, (b) resi
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!