Answer:
The observer detects light of wavelength is 115 nm.
(b) is correct option
Explanation:
Given that,
Wavelength of source = 500 nm
Velocity = 0.90 c
We need to calculate the wavelength of observer
Using Doppler effect

Where, 


Hence, The observer detects light of wavelength is 115 nm.
i think its a, good luck on your test
Take the moment car A starts to accelerate to be the origin. Then car A has position at time <em>t</em>
<em>x</em> = (20.0 m/s) <em>t</em> + 1/2 (2.10 m/s²) <em>t</em>²
and car B's position is given by
<em>x</em> = 300 m + (27.0 m/s) <em>t</em>
<em />
Car A overtakes car B at the moment their positions are equal:
(20.0 m/s) <em>t</em> + 1/2 (2.10 m/s²) <em>t</em>² = 300 m + (27.0 m/s) <em>t</em>
300 m + (7.00 m/s) <em>t</em> - (1.05 m/s²) <em>t</em>² = 0
==> <em>t</em> ≈ 20.6 s
Answer:
u= 29.43 m/s
h=44.14 m
Explanation:
Given that
t= 3 s
We know that acceleration due to gravity ,g = 9.81 m/s² (Downward)
Initial velocity = u
Final velocity ,v= 0 (At maximum height)
We know v = u +a t
v=final velocity
u=initial velocity
a=Acceleration
Now by putting the values in the above equation
0 = u - 9.81 x 3
u= 29.43 m/s
The maximum height h is given as
v² = u ² - 2 g h
0² = 29.43 ² - 2 x 9.81 x h

h=44.14 m
Answer:
с The handle will turn anticlockwise (to the left).
Explanation: