Answer:
391.67Hz
Explanation:
The fundamental frequency formula in string is expressed as;
Fo = V/2L
V is the velocity of the wave = 329m/s
L is the length of the string = 42cm = 0.42m
Substitute
Fo = 329/2(0.42)
Fo = 329/0.84
Fo = 391.67Hertz
Hence the fundamental frequency of a mandolin string is 391.67Hz
Answer:
"Longitudinal wave" is the appropriate answer.
Explanation:
- Generating waves whenever the form of communication being displaced in a similar direction as well as in the reverse way of the wave's designated points, could be determined as Longitudinal waves.
- A wave running the length of something like a Slinky stuffed animal, which expands as well as reduces the spacing across spindles, produces a fine image or graphic.
Answer: 3.41 s
Explanation:
Assuming the question is to find the time
the ball is in air, we can use the following equation:

Where:
is the final height of the ball
is the initial height of the ball
is the initial velocity of the ball
is the time the ball is in air
is the acceleration due to gravity

Then:


Multiplying both sides of the equation by -1 and rearranging:

At this point we have a quadratic equation of the form
, which can be solved with the following formula:
Where:
Substituting the known values:
Solving the equation and choosing the positive result we have:
This is the time the ball is in air